
Eberhard Karls Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät

Wilhelm-Schickard-Institut für Informatik

Master Thesis Computer Science

An ILP for Perfect Smooth Orthogonal

Drawings

Henry Förster

October the 21st, 2016

Reviewers

Michael Kaufmann
(Algorithmik)

Wilhelm-Schickard-Institut für Informatik

Universität Tübingen

Klaus-Jörn Lange
(Theoretische Informatik)

Wilhelm-Schickard-Institut für Informatik

Universität Tübingen

Supervisors

Michael Kaufmann
(Algorithmik)

Wilhelm-Schickard-Institut für Informatik

Universität Tübingen

Michael A. Bekos
(Algorithmik)

Wilhelm-Schickard-Institut für Informatik

Universität Tübingen

Förster, Henry:
An ILP for Perfect Smooth Orthogonal Drawings
Master Thesis Computer Science
Eberhard Karls Universität Tübingen
Thesis period: May 2016 - October 2016

i

Abstract

Perfect smooth orthogonal drawings represent each vertex as a point in the
plane and each edge either as a circular arc or a rectilinear straight line seg-
ment. The problem of finding such a drawing given an orthogonal shape as
an input is discussed in this thesis. By approximating the arcs with sequences
of rectilinear edges an orthogonal shape with edge complexity 1 is created. If
this shape is drawn planar while also fulfilling constraints on the lengths of arc
approximating edges the resulting drawing can be transformed into a perfect
smooth orthogonal drawing. An ILP is provided that can solve the problem of
drawing such an orthogonal shape with the mentioned edge length constraints.
By improving the arc approximation it can be shown that for an exponentially
large input parameter a perfect smooth orthogonal drawing is guaranteed to
be found if one exists for the given input shape. After evaluating the perfor-
mance of the presented approach on practically relevant benchmark test sets
the applicability of the approach is discussed and open problems based on the
results of this thesis are motivated.

ii

Zusammenfassung

Perfekte glatt-orthogonale Zeichnungen stellen jeden Knoten als einen Punkt
der Ebene und jede Kante entweder als Kreisbogen oder als rektilineare Strecke
dar. Das Problem eine solche Zeichnung für eine gegebene orthogonale Form
als Eingabe zu finden wird in dieser Thesis diskutiert. Durch die Approxima-
tion von Kreisbögen mit Sequenzen rektilinearer Kanten wird eine orthogonale
Form mit Kantenkomplexität 1 erzeugt. Wird diese Form planar gezeichnet
wobei sie auch Beschränkungen bezüglich der Längen der kreisbogenapprox-
imierenden Kanten erfüllen muss, kann die resultierende Zeichnung in eine
perfekte glatt-orthogonale Zeichnung transformiert werden. Ein ILP, welches
das Problem des Zeichnens einer solchen orthogonalen Form mit den erwähnten
Kantenlängenbeschränkungen lösen kann, wird zur Verfügung gestellt. Durch
das Verbessern der Kreisbogenapproximationen kann gezeigt werden, dass für
einen exponentiell großen Eingabeparameter garantiert werden kann, dass eine
perfekte glatt-orthogonale Zeichnung gefunden wird, falls eine solche für die
gegebene Form existiert. Nachdem die Performanz des vorgestellten Ansatzes
auf praxisrelevanten Benchmark-Testsets evaluiert wurde, wird die Anwend-
barkeit des Ansatzes diskutiert und offene Probleme basierend auf den Resul-
taten dieser Thesis werden motiviert.

iii

Acknowledgements

First and foremost I would like to thank my two supervisors, Prof. Michael
Kaufmann and Dr. Michael A. Bekos, for their support and advise and all
the helpful discussions during my thesis period. Also I am really happy to
have learned about algorithms and graph drawing from you and Dr. Till
Bruckdorfer.

I also wish to express a big thank you to the entire Algorithms group at the
University of Tübingen, including additionally to my supervisors Dr. Patrizio
Angelini and Niklas Heinsohn, for the nice atmosphere in which I could write
this thesis as well as for proofreading it in incredibly short time.

As my Master studies now come to a close, I also would like to express my
gratitude to all the lecturers that taught me something in the past 6 years, to
the friends I got to know who made this time so enjoyable and my parents for
their enduring support.

Finally, I would like to thank Prof. Michael Kaufmann for the opportunity
to join the Algorithms group after my graduation.

iv

Contents

List of Figures vii

List of Tables xi

List of Algorithms xiii

List of Abbreviations xv

1 Introduction 1

2 Preliminaries 3

2.1 Graph Theory . 3

2.1.1 Fundamental Terminology 3

2.1.2 Graph Drawing and Planar Graphs 5

2.2 Orthogonal Drawings . 6

2.3 Introduction to Mathematical Optimization 8

2.3.1 Linear Programming (LP) 9

2.3.2 Integer Linear Programming (ILP) 9

2.3.3 Indicator Constraints and the bigM Approach 10

2.4 Smooth Orthogonal Drawings 12

2.5 Related Work . 14

3 An ILP for SC1 Drawings 15

3.1 General Outline . 15

3.2 Metrics . 16

v

vi CONTENTS

3.3 Replacing Circular Arcs - A Simple Approximation 18

3.4 Building the ILP . 24

3.4.1 Constraints for Approximation Edge Lengths 26

3.4.2 Constraints for Planarity 27

3.4.3 Constraints for Weak Planarity 37

3.4.4 Choosing the Correct Constraints for Edge Pairs 39

3.4.5 An Objective Function for Minimizing the Total Edge

Length . 44

4 More Sophisticated Arc Approximations 47

4.1 Limitations of the Simple Approximation 47

4.2 A New Model for 180° and 270° Circular Arcs 49

4.3 A Staircase Approximation . 52

4.4 A Provably Optimal Approximation 56

4.5 Further Considerations . 61

5 Practical Evaluation 65

5.1 Experimental Setup . 65

5.2 Experimental Results . 66

6 Discussion 75

6.1 Discussion of Our Results . 75

6.2 Comments on the Runtime . 76

6.3 Nearly Perfect Smooth Orthogonal Drawings 77

6.4 Varying the Staircase Step Size 88

6.5 First Insights for the Shape Step 90

7 Conclusion and Open Problems 95

Bibliography 99

List of Figures

2.1 Three drawings of the same graph with similar shapes. 12

3.1 A bend minimal orthogonal shape that does not admit for a

SC1 drawing. 16

3.2 Possible types of arcs in a SC1 drawing. 17

3.3 Simple approximation of the three possible arc types. 20

3.4 Explanation for the need of zero length edges 21

3.5 An example emphasizing the idea of weakly planar drawings. . . 22

3.6 A quarter circle arc’s inner approximation laying on the rest of

the graph. 23

3.7 Illustration used in the proof of edge lengths in the simple ap-

proximation. 24

3.8 Simple approximation of the three possible arc types with re-

quired edge lengths. 25

3.9 An example for the cyclic order and the resulting orientations

of edges in an OC1 drawing. 28

3.10 Possibilities for overlappings of pairs of parallel edges. 30

3.11 Possibilities for connections of bridges to the face. 30

3.12 The 4 sufficient conditions for non-crossing edges. 31

3.13 If two edges intersect, they necessarily violate all conditions of

Lemma 4. 31

3.14 Concept of the local coordinate systems for a face. 32

3.15 The four sufficient conditions for non-overlapping horizontal edges. 36

vii

viii LIST OF FIGURES

3.16 The four sufficient conditions for weakly planar intersections. . . 38

3.17 An example configuration that may cause problems with the

approach so far. 40

3.18 An OC1 drawing with a bounded face containing 7 strictly con-

vex vertices, 1 other convex vertex and 3 concave vertices. . . . 41

3.19 A concave vertex on a face with its 2 edges of the cyclic order

of the face. 42

3.20 A convex vertex on a face with its 2 edges of the cyclic order of

the face. 43

3.21 Zero length edges of a quarter circle arc and other edges that

satisfy weak planarity as demanded by the zero length edges. . . 44

4.1 A graph with 2 arcs that have a common endpoint. 48

4.2 A graph that is drawn too large with the simple approximation. 49

4.3 A graph that cannot be drawn with the simple approximation

model drawn with minimum edge length. 50

4.4 Possible configurations between two quarter circle arcs sharing

a common endpoint. 51

4.5 The 3 nodes in this configuration need to be aligned on a diagonal. 51

4.6 Larger arc types split in 90° arcs. 52

4.7 A staircase approximation with nstaircase = 3. 53

4.8 Computation for the inner connector edge lengths. 55

4.9 Arc approximation with two zero length edges at each endpoint. 55

4.10 Minimally optimal approximation. 57

4.11 One half of the minimally optimal approximation. 58

4.12 Oversampling in the minimally optimal approximation. 59

4.13 Proof for an upper bound of Rmax. 60

4.14 Subsampling an arc with the minimally optimal approximation

and the staircase approximation with the same number of edges

as in the subsampling. 63

LIST OF FIGURES ix

5.1 Scatter plots with linear regression for the performance of both

approaches for both test sets. 69

5.2 An easy to draw graph with rather high bent edge ratio of value
1
3
. 69

5.3 All three measurements dependent on the input size of the graph

|V |. 70

5.4 All three measurements dependent on the density of the graph
|E|
|V | . 71

5.5 All three measurements dependent on the bent edge ratio of the

graph. 72

5.6 ADT dependent on graph size and density. 73

5.7 An orthogonal shape of a graph with just 6 vertices that cannot

be realized as a SC1 drawing. 74

5.8 Average density of the graphs in the test set depending on the

number of vertices. 74

6.1 Graph with a pattern typical for very large SC1 drawings. . . . 79

6.2 The orthogonal shape from Figure 6.1 where the green arc is

drawn with 2 segments. 80

6.3 The orthogonal shape from Figure 6.1 where the red arc is drawn

with 2 segments (option 1). 81

6.4 The orthogonal shape from Figure 6.1 where the red arc is drawn

with 2 segments (option 2). 82

6.5 The orthogonal shape from Figure 6.1 where the green edge was

removed before drawing (drawn with nstaircase = 2). 83

6.6 A second example graph showing a pattern responsible for ex-

ponential drawing space. 84

6.7 The orthogonal shape from Figure 6.6 where the inner green arc

is drawn with 2 segments. 85

6.8 The orthogonal shape from Figure 6.6 where the outer red arc

is drawn with 2 segments. 86

x LIST OF FIGURES

6.9 The orthogonal shape from Figure 6.6 drawn with nstaircase = 2

as a perfect smooth orthogonal drawing. 87

6.10 An arc of radius 18 and its inner approximation as defined by

the staircase approximation. 88

6.11 An arc of radius 18 and its inner approximation drawn such that

the first inner connector edge is as short as possible. 89

6.12 An arc of radius 18 and its inner approximation drawn such that

the space reserved for drawing the arc is minimized. 90

6.13 Forbidden path configurations between the endpoints of a single

arc. 92

6.14 Forbidden configurations between multiple arcs. 92

6.15 Forbidden configurations between 4 arcs. 93

List of Tables

5.1 Number of graphs drawn successfully by the two approaches. . . 66

5.2 Statistics of graphs only drawn with nstaircase = 2. 67

6.1 Total edge lengths computed depending on nstaircase and the

replacement of arcs for the first example graph. 78

6.2 Total edge lengths computed depending on nstaircase and the

replacement of arcs for the second example graph. 80

xi

xii LIST OF TABLES

List of Algorithms

1 Branch & Bound Algorithm . 11

2 General outline for the Smog TSM approach 15

3 ILP approach for finding a SC1 drawing based on a given shape

S(G) . 17

xiii

xiv LIST OF ALGORITHMS

List of Abbreviations

Smog Smooth orthogonal
LP Linear Program, Linear Programming
ILP Integer Linear Program, Integer Linear Programming
TSM Topology Shape Metrics
ATEL Average Total Edge Length
ACT Average Computation Time
AAEL Average of Average Edge Length
ADT Average Declination Time
VLSI Very Large Scale Integration
i.e. Latin: id est, meaning ”that is (to say)”
e.g. Latin: exempli gratia, meaning ”for (the sake of an) example”
cf. Latin: confer, meaning ”compare to” or ”compare with”
w.r.t. with respect to

xv

xvi LIST OF ABBREVIATIONS

Chapter 1

Introduction

Graphs have many useful applications as tools in different disciplines as well
as in our everyday lives:

• Metro plans show the stations of the network (i.e. vertices) which are
connected with each other on the plan if there is a train available between
the 2 stations.

• Business workflow models connect different states or steps with each
other to indicate that one state/step follows the other.

• In the VLSI (Very large scale integration) design process, transistors can
be abstracted as vertices of a graph with wires (i.e. edges) connecting
them.

• The Unified Modeling Language (UML), primarily used in software de-
velopment, defines several diagram types that are based on graphs.

All those example applications have in common that they involve the drawing
of graphs. Not surprisingly, graph drawing is well studied for aesthetically
appealing and well readable drawing types.

One of the most commonly used drawing types is orthogonal drawing. Here
vertices are connected by sequences of axis-aligned straight line segments with
90° bends between two line segments. Orthogonal drawings are well known for
their angular resolution and readability. However, recent research in human
perception indicates, that the sharp bends contained in orthogonal drawings
can impede readability [HEH09].

Inspired by the work of American artist Mark Lombardi1, Bekos et
al. introduced the concept of smooth orthogonal drawings [BKKS13]. Smooth

1A selection of Lombardi’s Narrative Structures which show connections between actors
in political events and other well-known politicians in artistically drawn graphs with circular
arcs can be accessed at http://www.pierogi2000.com/artists/mark-lombardi/.

1

http://www.pierogi2000.com/artists/mark-lombardi/

2 CHAPTER 1. INTRODUCTION

orthogonal drawings retain the angular resolution of orthogonal drawings but
in order to change the routing along an edge circular arcs are drawn instead
of sharp bends.

Previous research has shown that planar graphs with maximum degree four
or less can always be drawn with smooth orthogonal drawings when each edge
may consist of at least two segments (straight-line or arc) [ABK+14]. However
if every edge shall be drawn either as a single circular arc or a single straight-
line segment, i.e. if a perfect smooth orthogonal drawing is requested, only for
limited classes of graphs such a result exists [BGPR14].

The goal of this thesis is to find approaches for drawing a graph as a per-
fect smooth orthogonal drawing given an orthogonal input shape. By only
focusing on the ”smoothing” process it may be easier to find a solution com-
pared to the problem of finding such a drawing when the input is only a graph
without an embedding or shape. Further the identified algorithms should be
evaluated using commonly used benchmark test sets with respect to runtime
and measurable quality of the resulting drawings. Finally the results should
be discussed to show open problems which can be studied subsequently.

The following chapters are organized as follows:

First, in Chapter 2 we will discuss fundamental terminology needed for
understanding the remainder of this thesis. Also we will briefly introduce
results of previous studies.

In Chapter 3 we will present the main idea of our approach and introduce
an ILP with feasible solutions corresponding to perfect smooth orthogonal
drawings.

Then, in Chapter 4, we will suggest two improved parametrized versions
of our approach and show that both of them are guaranteed to find a perfect
smooth orthogonal drawing given exponential parameter settings.

Next, we will evaluate the performance of our approaches on benchmark
data in Chapter 5 both with respect to a measurable quality of the produced
drawings and the time needed for computation.

Finally we discuss our results and motivate open problems based on our
results on perfect smooth orthogonal drawings in Chapter 6 before we concluce
with a summary of the thesis in Chapter 7.

Chapter 2

Preliminaries

2.1 Graph Theory

In this section we will define some fundamental terms for the following chap-
ters. Most of the terms are presented similar to their presentation in the work
of Nishizeki and Rahman [NR04a] and emphasizing the common way they
are used in graph theoretic contexts.

2.1.1 Fundamental Terminology

If we want to discuss graphs, of course first we need to define what a graph is:

Definition 1 (Graph). A graph G is a 2-tuple (V,E) consisting of

• a finite set of vertices or nodes V

• a finite set of edges E ⊆ V × V

Therefore, a graph at first is only an abstract mathematical concept. Most
commonly it is used to describe relations between some entities. Entities then
are represented by a vertex v ∈ V . The existence of a relation between two
vertices v1, v2 ∈ V is expressed by the existence of the edge (v1, v2) ∈ E. More
formally, we say:

Definition 2 (Relations between Vertices and Edges). Two vertices
v1, v2 ∈ V are called neighbors or to be adjacent if (v1, v2) ∈ E. For
the edge e = (v1, v2) ∈ E we say that it is incident to both v1 and v2. Also
we call v1 and v2 the endpoints of E. Similarly to vertices, we shall say

3

4 CHAPTER 2. PRELIMINARIES

that two edges e1 = (v1, v2) ∈ E and e2 = (w1, w2) ∈ E are neighbors if
they have a common endpoint.

Very often, algorithmic applications that deal with graphs require a graph
to have special properties. One of the most commonly required properties is
that the graph shall be simple:

Definition 3 (Simple Graphs and Multigraphs). An edge (v1, v2) ∈ E is
called a loop if v1 = v2. Two edges (v1, v2) ∈ E and (w1, w2) ∈ E are
called multiple edges if they share the same endpoints. A graph is called a
simple graph if it does not contain any loops or multiple edges. Otherwise,
it is called a multigraph.

The approaches in this thesis also will require a graph to be simple. Another
often required property - especially in the context of orthogonal drawings - is
the maximum degree of a graph:

Definition 4 (Degree). We say that a vertex v ∈ V has degree k or for
short d(v) = k if k edges are incident to v. We say that a graph has
maximum degree k iff there exists a vertex v ∈ V with d(v) = k and there
exists no vertex v′ with d(v′) > k.

As we will motivate in Section 2.2, for our approaches we will require the
graphs to have maximum degree four or less. Further, we will require graphs
to be (at least 1-)connected.

Definition 5 (Paths and Connectivity). A sequence of vertices v1, v2, ..., vk
is called a path in G if

• v1, v2, ..., vk ∈ V

• ∀1 ≤ i ≤ k : ∀1 ≤ j ≤ k : i 6= j =⇒ vi 6= vj

• ∀1 ≤ i < k : (vi, vi+1) ∈ E

A graph is called k-connected if for every pair of vertices v1, v2 ∈ V with
v1 6= v2 there exist k vertex-disjoint paths between v1 and v2. If a graph
is 1-connected we also call it connected. A graph that is not 1-connected
is called disconnected.

If a graph is exactly 1-connected, we may observe special types of edges,
called bridges.

2.1. GRAPH THEORY 5

Definition 6 (Bridge (As defined for example by Tarjan in [Tar74] but
here limited to connected graphs).). An edge e ∈ E of a connected graph
G = (V,E) is called a bridge if and only if removing e would disconnect
G.

2.1.2 Graph Drawing and Planar Graphs

So far, we only discussed graphs as an abstract concept. However, many
applications also demand to draw a graph. Drawing here means that the
abstract sets of vertices and edges are represented in a way that is visually
perceivable by humans. Very often, vertices are drawn as points, circles or
squares whereas edges are drawn as lines connecting the vertices.

It is easy to see, that there are infinitely many drawings of a single graph.
One of the most important ways to draw a graph is the planar representation.
The following definitions for planar representations, planar graphs and planar
embeddings all are presented in a fashion similar to the way they are introduced
by Weiskircher in [Wei01].

Definition 7 (Planar Representation). A planar representation or planar
drawing of a graph G = (V,E) is a drawing Γ(G) where

• every vertex v ∈ V is drawn as a point in the plane, i.e. Γ(v) =
(x, y) ∈ R2.

• no two vertices v1, v2 ∈ V are drawn at the same point, i.e. Γ(v1) 6=
Γ(v2) if v1 6= v2.

• every edge e ∈ E is drawn as an open Jordan curve Γ(e) connecting
the drawings of its two endpoints and fulfilling the following proper-
ties:

– ∀e′ ∈ E : e 6= e′: Γ(e) and Γ(e′) have no common points except
if they have a common endpoint. In that case, the only common
point(s) is/are their common endpoint(s).

– ∀v ∈ V : if v is not endpoint of e ∈ E, Γ(e) does not contain
Γ(v)

The regions of the plane separated by the representations of edges are
called faces of Γ. Exactly one of the faces is unbounded, this face is called
the outerface of Γ.

It turns out that not every graph can be drawn as a planar representation.
Therefore, we can define the class of planar graphs.

6 CHAPTER 2. PRELIMINARIES

Definition 8 (Planar Graph). A planar graph is a graph that can be
drawn with a planar representation.

For every planar graph, there exist infinitely many planar representations.
However, it can be shown that there exist only finitely many planar embeddings
as equivalence classes of planar representations.

Definition 9 (Planar Embedding). A planar embedding defines the cy-
cles of edges bounding the faces of a drawing as well as which face is the
outerface. In contrast to a planar representation it does neither define the
position of vertices nor open Jordan curves for edges. A planar representa-
tion realizes a planar embedding if it uses the embedding’s cycles to bound
its faces and its outerface is the face designated as the outerface by the
embedding.

If a drawing is not planar it contains crossings.

Definition 10 (Crossing). Let G = (V,E) be a graph and Γ(G) a drawing
of G where every vertex v ∈ V is drawn as a point in the plane. If a pair
of edges e, e′ ∈ E is drawn such that Γ(e) and Γ(e′) have a common point
c which is not a common endpoint, we call c a crossing.

2.2 Orthogonal Drawings

The definition of planar drawings still allows much freedom in the drawing
of edges. While not allowing crossings in a drawing already is beneficial for
readability, further improvements are possible by constraining the way we allow
an edge to be drawn. Straight-line drawings (i.e. drawings where every edge
is drawn as a straight line segment) tend to have poor angular resolution1 and
therefore often do not appeal aesthetically to humans. Orthogonal drawings
(as they are also discussed by Eiglsperger et al. in [EFK01]) expand the
idea of straight-line drawings to using a sequence of straight-line segments to
draw an edge. However, in the orthogonal model the orientations of those
straight-line segments are further restricted.

1Angular resolution is defined by the smallest angle between any two edges incident to a
common endpoint. It is one of several commonly used aesthetics measurements. For a list
of aesthetics measurements, refer to [NR04b].

2.2. ORTHOGONAL DRAWINGS 7

Definition 11 (Orthogonal Grid Drawing). An orthogonal grid drawing
ΓOrth(G) of a planar graph G = (V,E) is a planar drawing with the fol-
lowing properties:

• Every vertex v ∈ V is drawn as an integer grid point in the plane,
i.e. ΓOrth(v) = (x, y) ∈ Z2.

• Every edge e = (s, t) ∈ E is drawn as a series of axis-aligned straight
line segments, i.e. ΓOrth(e) = s1s2...si and ∀k ∈ {1, ..., i} : sk is
a straight line segment with integer coordinate endpoints. Further,
ΓOrth(e) fulfills the following properties:

– ∀k ∈ {2, ..., i− 1} : sk only intersects with sk−1 and sk+1 which
are perpendicular to sk. For any pair of intersecting segments,
the intersection happens in a single common endpoint of the
segments. Common endpoints are called bends.

– s1 and si each intersect at one of their endpoints with their suc-
cessor or predecessor in the sequence of segments respectively.
The other endpoints are s and t respectively.

• At every vertex v ∈ V , only one of its incident edges may be con-
nected to v from the left/right/top/bottom direction. We say that
v has a west/east/north/south port at which only one edge can be
connected to v.

Note that only graphs of maximum degree 4 or less may allow for an or-
thogonal drawing because each vertex only has 4 ports.

Since this definition does not make any statement about the number of line
segments used for any edge, there can be orthogonal drawings with arbitrary
edge routings. Therefore, we define another quality parameter, which we call
orthogonal complexity.

Definition 12 (Orthogonal Complexity k (as defined in [ABK+14])). A
planar graph G = (V,E) has orthogonal complexity k iff it admits for an
orthogonal (grid) drawing ΓkOrth(G) where every edge e ∈ E is drawn with
at most k segments, i.e. |ΓkOrth(e)| ≤ k. For short, we write G ∈ OCk.
Also, we say that ΓkOrth(G) has orthogonal complexity k and call it an OCk
drawing of G.

Note that OC1 drawings are very restricted straight-line drawings.

Similar to planar embeddings as equivalence classes, for orthogonal draw-
ings we can define equivalent drawings that use the same orthogonal shape.

8 CHAPTER 2. PRELIMINARIES

Definition 13 (Orthogonal Shape). An orthogonal shape defines

• a planar embedding.

• the angles (which are multiples of 90°) between edges incident to the
same vertex.

• the sequence of bends along each edge (including the information
whether it is a left bend or a right bend).

Note, that the orthogonal shape does not tell us anything about vertex
positions or edge lengths.

Orthogonal drawings are often drawn with the Topology-Shape-Metrics
Approach (or for short TSM approach) as described by Battista et al.
[BETT98]:

1. First, a topology of the graph (i.e. a planar embedding) is computed.
There exist efficient algorithms to compute an embedding. For orthog-
onal drawings, any planar embedding is good enough (as shown by
Tamassia [Tam87]).

2. Next, we compute an orthogonal shape. With the min-flow algorithm
presented by Tamassia [Tam87] we can compute the shape with the
minimum number of bends.

3. Finally, we fix the edge lengths of the computed shape and therefore when
fixing a single vertex position also the positions of all other vertices in the
metrics step. Minimal total edge lengths here can be computed with a
flow network as well (for details refer to Eiglsperger et al. [EFK01]).

Finally, it is worth mentioning, that orthogonal drawings have practical
applications in both VLSI design (since it is beneficial to route wires rectilin-
ear) and information visualization (as orthogonal drawings generally appeal
aesthetically to humans).

2.3 Introduction to Mathematical Optimiza-

tion

The following introduction to mathematical optimization is based on the work
of Vanderbei [Van10].

Mathematical optimization in general is about finding an optimal solution
from a set of feasible solutions. There are several different variants of opti-
mization problems that differ in aspects as

2.3. INTRODUCTION TO MATHEMATICAL OPTIMIZATION 9

• how it is decided whether a solution is feasible.

• how it is decided whether a solution is optimal.

In this section we will introduce the variants of optimization that are used in
this thesis.

2.3.1 Linear Programming (LP)

The linear programming problem is defined as follows:

Definition 14 (Linear Programming Problem). Given a linear objective

function z =
n∑
i=1

cixi with constant ci’s and a set of constraints where each

is of the linear form
n∑
i=1

aixi{≤,=,≥}b with constant ai’s and b over the

decision variables x1, x2, ..., xn ∈ R: Assign values to x1, x2, ..., xn such
that every constraint is satisfied and the value of z is minimal (or maximal
depending on the instance).

An instance of the Linear Programming Problem is called a linear
program (or for short LP). An assignment of values to the decision variables
is called a solution. If a solution satisfies every constraint it is called
feasible. If it further minimizes (or maximizes) the objective function we
call it optimal.

A huge number of mathematical problems can be modeled as linear pro-
grams, e.g. game theoretic problems (finding an optimal strategy), regression,
network flow problems. Additionally there exist many applications in business
management, e.g. resource allocation, portfolio selection, option prizing.2

The most famous and often applied algorithm is the Simplex Method. The
Simplex Method however has an exponential worst-case running time. Interior
Points Methods on the other hand achieve polynomial running times. Interior
Point Methods can compete with the Simplex Method w.r.t. to runtime for
smaller problems3 and outperform it for larger problems.

2.3.2 Integer Linear Programming (ILP)

While Linear Programming already is a powerful tool, we may easily get into
a situation where we want the decision variables to be only integers as not

2For more details on those applications, refer to [Van10].
3The first polynomial time algorithm, the Ellipsoid Method, performed worse than the

Simplex method in most practical applications.

10 CHAPTER 2. PRELIMINARIES

always in applications it is possible to split the entities represented by the
variables in non-integer parts (e.g. when variables correspond to coordinates
on a grid). When we allow only integer values for the variables, we call the
problem of finding an optimal solution the Integer Linear Programming Prob-
lem and instances of this problem are called Integer Linear Programs (or for
short ILP).

Integer Linear Programming is in fact harder than Linear Programming,
it is NP-hard since problems known to be NP-complete, e.g. the travelling
salesman problem or even 3-SAT, can be reduced to an ILP4.

Given an ILP, we may now assume that it would be a good idea to just
compute the solution for the LP we obtain when we keep all constraints the
same and just allow real numbers instead of integers for the values of decision
variables (the resulting LP is called the LP-Relaxation) and then round the
value of all variables. But this does not always yield the optimal solution even
when we have only 2 decision variables.

An algorithm to solve ILP is Branch & Bound (cf. Algorithm 1): In Branch
& Bound, we solve LP relaxations of the ILP and then check, if their solutions
happen to be integer. If this is the case, we check if it is the best solution
found so far (bound). Otherwise, we branch by creating two new ILPs with
one additional constraint each which are violated by the non-integer solution
we computed. For the initial call, z∗ and X∗ are undefined. z∗ as the bound
and X∗ as the optimal solution should be available with the same value to
all iterations currently running. Note that Branch & Bound can be easily
parallelized with every recursive function call using a separate thread. Making
z∗ available to all running iterations is crucial for the algorithm to terminate
as early as possible.

2.3.3 Indicator Constraints and the bigM Approach

Integer decision variables turn out to increase the expression power of linear
programming more than we might expect at first. With a little trick, they can
be used to toggle the need to satisfy a constraint

a1x1 + ...+ anxn ≥ b

on or off as for example discussed in [BLTW15] (along with other approaches
on constraints, that can be toggled on or off, or in other words indicator
constraints): For this to happen we will need to include a new boolean indicator

4A reduction for the Travelling Salesman Problem can be found in [Van10], 3-SAT is
very easy to see: Create a decision variable for every boolean variable in the SAT instance
with feasible values drawn from {0, 1} and a constraint for every clause of the SAT instance
where disjunction is replaced by addition.

2.3. INTRODUCTION TO MATHEMATICAL OPTIMIZATION 11

Algorithm 1: Branch & Bound Algorithm

Input: An ILP P , a bound for the objective function z∗ (for initial call
±∞ depending on whether the ILP is a minimization or a
maximization problem), a integer solution X∗ (for initial call
empty) for which the objective function’s value is z∗

Output: An optimal solution for P if one exists
P ′ ← LP-Relaxation of P
Solve P ′

X ← optimal solution for P ′

z ← best objective function value for P ′

if P ′ infeasible or z worse than z∗ then
return X∗

else
if X only contains integer values for variables then

z∗ = z
X∗ = X
return X

else
xj ← one of the variables violating the integer constraint in X
vj ← the value of xj in X
X1 ← Branch & Bound(P with xj ≤ bvjc as an additional
constraint, X∗, z∗)
X2 ← Branch & Bound(P with xj ≥ dvje as an additional
constraint, X∗, z∗)
return OPT (X1, X2) where OPT is either min or max

12 CHAPTER 2. PRELIMINARIES

(a) An orthogonal draw-
ing.

(b) A smooth orthogonal
drawing.

(c) A smooth orthogonal
drawing.

Figure 2.1: Three drawings of the same graph with similar shapes.

variable i ∈ {0, 1}. Then we can reformulate the constraint to

a1x1 + ...+ anxn +M · (1− i) ≥ b

where M is a very large positive constant scalar. The idea is that we add
M(1 − i) on the side that shall be larger. Now if i = 1 this equals to adding
0, i.e. the original constraint will need to be satisfied. However, if i = 0 then
we added M which is very large to the side that should be greater, i.e. we will
always satisfy the constraint. This technique is called the bigM Approach.

Since - as mentioned before - 3-SAT can be reduced to ILP we are also able
to impose logical relations between different indicator variables such that not
all indicator variables are set to 1 at the same time.

2.4 Smooth Orthogonal Drawings

Before we conclude this chapter, we still have to define smooth orthogonal
drawings. Smooth orthogonal drawings are a quite recent research topic and
were introduced by Bekos et al. [BKKS13]. Intuitively, we want to retain
some of the properties of orthogonal drawings, i.e. the limited number of
orientations of straight-line edge segments and the angular resolution defined
by the port concept. However, we want to remove the sharp 90° bends along
edges by drawing circular arcs instead, or in other words, we want to ”smooth”
the edges. Sometimes we may even replace more than one bend with a single
arc (cf. Figure 2.1).

More formally, we can define:

Definition 15 (Smog Grid Drawing). A smooth orthogonal or Smog grid
drawing ΓSmog(G) of a planar graph G = (V,E) is a planar drawing with
the following properties:

• Every vertex v ∈ V is drawn as an integer grid point in the plane,

2.4. SMOOTH ORTHOGONAL DRAWINGS 13

i.e. ΓSmog(v) = (x, y) ∈ Z2.

• Every edge e = (s, t) ∈ E is drawn as a series of straight line seg-
ments, quarter circle arcs, half circle arcs or three-quarters circle
arcs, i.e. ΓSmog(e) = s1s2...si and ∀k ∈ {1, ..., i} : sk is a straight
line segment, a quarter circle, a half circle or a three-quarters circle.
Endpoints of segments are always located on integer coordinates.
Further, ΓSmog(e) fulfils the following properties:

– ∀k ∈ {2, ..., i − 1} : sk only intersects with sk−1 and sk+1. For
any pair of intersecting segments, the intersection happens in
a single common endpoint of the segments. At this common
endpoint the tangents of both segments overlap.

– s1 and si each intersect at one of their endpoints with their suc-
cessor and predecessor in the sequence of segments respectively.
The other endpoints are s and t respectively. At s and t their
tangent’s slope is either 0 or ±∞, i.e. the tangent is horizontal
or vertical.

• At every vertex v ∈ V , only one of its incident edges may be con-
nected to v from the left/right/top/bottom direction. We say that
v has a west/east/north/south port at which only one edge can be
connected to v.

• In the scope of this thesis we will also require each circular arc to
have an integer radius. This may diverge from definitions of half
circle arcs in other publications.

Note that we still require the ports of orthogonal drawings despite two arcs
that have a vertex as a common endpoint would not necessarily overlap even
if they used the same port.

As we did with orthogonal drawings, we can evaluate the quality of a
smooth orthogonal drawing by considering the smooth complexity.

Definition 16 (Smooth Complexity k (as defined in [ABK+14])). A planar
graph G = (V,E) has smooth complexity k if it admits for a Smog drawing
ΓkSmog(G) where every edge e ∈ E is drawn with at most k segments, i.e.
|ΓkSmog(e)| ≤ k. For short, we write G ∈ SCk. Also, we say that ΓkSmog(G)
has smooth complexity k and call it a SCk drawing of G.

In particular, we will deal with SC1 drawings which are also called perfect
smooth orthogonal drawings.

14 CHAPTER 2. PRELIMINARIES

Definition 17 (Perfect Smooth Orthogonal Drawing (as defined in
[BGPR14]). A smooth orthogonal drawing is called perfect iff it has smooth
complexity 1. We say that an edge has perfect edge complexity iff it is
drawn with a single segment.

2.5 Related Work

Finally, we will end this chapter with recent results on smooth orthogonal
drawings:

In [BKKS13], Bekos et al. showed that if a graph admits for a bend-
minimal OCk drawing that it then also admits for a SCk drawing with a total
number of edge segments not exceeding the total number of edge segments in
the bend-minimal OCk drawing. Also, they could show that SC1 drawings
may require exponential area even when the orthogonal shape of the drawing
is not fixed and that there are infinitely many graphs with maximum degree 4
or less that cannot be drawn as a SC1 drawing.

In [BGPR14] Bekos et al. showed that planar graphs with maximum
degree 3 or less can be drawn as SC1 drawings.

In [ABK+14] Alam et al. showed that every planar graph with maxi-
mum degree 4 or less can be drawn as a SC2 drawing5. If the graph even is
biconnected and has maximum degree 3 or less, they also upperbounded the
required area by O(|V |3). Further, they could show that biconnected planar
graphs with maximum degree 4 or less can be drawn with SC1 if they are
outerplanar.

5Häussner [Hä14] presented an implementation of the constructive proof.

Chapter 3

An ILP for SC1 Drawings

3.1 General Outline

In this section we want to introduce an approach for SC1 drawings similar
to the TSM framework as described by Battista et al. [BETT98] for
orthogonal drawings (cf. Algorithm 2).

Algorithm 2: General outline for the Smog TSM approach

Input: A graph G = (V,E)
Output: A smog drawing ΓSmog(G) with SC1 if found
Compute a planar embedding E(G)
Compute an orthogonal shape S(G) which uses E(G) as its embedding
Compute positions for the vertices v ∈ V to obtain a drawing ΓSmog(G)
return ΓSmog(G)

As in the TSM approach for orthogonal drawings, we will at first compute
a planar embedding E(G) (the topology) for a given graph G = (V,E), then
compute an orthogonal shape S(G) (i.e. a drawing without fixed edge lengths
and vertex positions that implements E(G)) and finally we will assign positions
ΓSmog(v) on the plane to each vertex v ∈ V (the metrics) to obtain a smog
drawing.

By now, we will use any planar embedding E(G) and we will compute the
orthogonal shape S(G) with the min-flow algorithm of Tamassia.

Note that not every orthogonal shape S(G) admits for a Smog drawing
ΓSmog(G) of SC1 even if it is bend minimal. To see this, consider the bend
minimal shape given in Figure 3.1a1. It contains 4 edges with a single bend
which therefore should later be drawn as a quarter circle. Intuitively we could

1The shape was computed with Tamassia’s min-flow algorithm [Tam87] for finding a
bend-minimal shape.

15

16 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

(a) A shape. (b) Why it cannot be drawn as SC1.

Figure 3.1: A bend minimal orthogonal shape that does not admit for a SC1

drawing.

start for example at the bottom left face and increase its size until we can draw
the quarter circle arc there. However, when we then proceed with the other
faces with bends in clockwise order, we will observe that every consecutive
face has to be drawn larger than the one before. When we finally reach the
face with the edge colored red in Figure 3.1b, we can observe that drawing
this edge correctly would destroy the quarter circle arc in the bottom left face
again.

Additionally, assigning edge lengths in the metrics step is not as easy as
it is for normal orthogonal drawings. While the goal still is to minimize the
sum of the lengths of all edges, the x- and y−coordinates of the drawings of
vertices Γ(v) = (x, y) are not independent from each other in SC1 drawings.
Specifically, circular arcs Γ((v1, v2)) between two vertices v1 and v2 impose
strict dependencies on the coordinates of Γ(v1) = (x1, y1) and Γ(v2) = (x2, y2):

• For quarter circle arcs and three-quarters circle arcs: |x1 − x2| = |y1 −
y2|, i.e. the two points representing vertices v1 and v2 are located on a
diagonal.

• For half circle arcs: |x1 − x2| = 0 or |y1 − y2| = 0, i.e. the two points
representing vertices v1 and v2 are located on a straight line. Note that
because we also demand integer radii the distance between both points
will need to be even (as it is equal to the diameter).

For an illustration, refer to Figure 3.2.

3.2 Metrics

The task in this stage of the TSM approach is the following: Given an orthog-
onal shape S(G) of a graph G = (V,E), assign coordinates ΓSmog(v) to every

3.2. METRICS 17

(a) Quarter circle arc. (b) Half circle arc. (c) Three-quarters circle arc.

Figure 3.2: Possible types of arcs in a SC1 drawing.

vertex v ∈ V such that then every edge e ∈ E can be drawn as a circular
arc (quarter circle arc, half circle arc or three-quarters circle arc) or a straight
line ΓSmog(e). During the calculation we also would like to find a reasonable
drawing that uses as few space as possible. Algorithm 3 shows the outline of
an ILP approach that assigns edge lengths to all edges in the SC1 drawing
while minimizing the total edge length (which is the usual approximation for
minimizing the area if one is restricted to linear operations only).

Algorithm 3: ILP approach for finding a SC1 drawing based on a given
shape S(G)

Input: An orthogonal shape S(G) of a connected planar graph
G = (V,E)

Output: A smog drawing ΓSmog(G) with SC1 if exists
Insert dummy vertices and edges to discretely approximate circular arcs
Build an ILP whose constraints preserve planarity and suitable lengths
for dummy edges
Solve the ILP minimizing total edge length
if no solution found then

return failure

Assign edge lengths to the graph and replace dummy vertices and edges
by circular arcs
return ΓSmog(G)

The basic idea in high-detail is to replace the circular arcs with a sequence
of axis-aligned straight line segments that sufficiently approximate the circular
arc. Then the constraints of our ILP only need to preserve planarity while also
ensuring that there will be enough space to draw the circular arcs. Finally we
can solve the ILP and by doing so optimize an useful property, in this case the
total edge length.2 Finally, after we have computed all the edge lengths, we

2Another property that can easily be implemented using a linear objective function and
some more variables and constraints to store the minimum and the maximum edge lengths
is the minimum difference between the shortest and the longest edge length (i.e. the aspect
ratio [NR04b]).

18 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

can draw the entire graph by fixing the position of a single vertex. Note that
if the graph is not connected, this will not work. However, if a graph is not
connected, there are two options to still apply the approach:

1. Connect the graph by adding more edges to the orthogonal shape before
applying the approach. It is important to only add bridges in order to
be sure that the resulting orthogonal shape can be drawn if the original
shape could be drawn as well.3

2. Apply the approach on each connected component of the graph and
putting everything back together afterwards.

Here, no fixed solution for unconnected graphs is presented, since depending on
the application one solution may be better than another: Option 1 for example
may be beneficial if we want components that are inside the face of another
component to still appear inside this component after solving the ILP. On the
other hand, option 2 then may yield smaller drawings as the face containing
the component in the shape might be drawn with less area.

In the following sections, the steps of the approach will be described more
detailed.

3.3 Replacing Circular Arcs - A Simple Ap-

proximation

As we will see later, an ILP is sufficient to preserve planarity when assigning
edge lengths to a given orthogonal shape. We will exploit this property and
replace the bent edges in our given orthogonal shape (that we want to draw as
a circular arc later) by simple straight line segments. By doing so, we remove
the need for a quadratic constraint for checking intersections of circular arcs
with other circular arcs or straight edges. In fact, we will use two sequences
of line segments alternating between horizontal and vertical segments, one on
either side of the circular arc.

For now, we want to use a simple approximation, i.e. we will just use the
approximation of circular arcs presented in Figure 3.3. As depicted in the
figures, for all types of arcs we will replace the arc by two sectors of squares
(depending on the arc type, we will use the same part of the square as the arc
uses a part from a circle):

• One of those sequences of straight line segments will be the outer approx-
imation (colored blue in Figure 3.3), the sidelength of the corresponding
square is as large as the diameter of the circular arc.

3By only creating bridges

3.3. REPLACING CIRCULAR ARCS - A SIMPLE APPROXIMATION 19

• The other such sequence will serve as an inner approximation (colored
red in Figure 3.3), the sidelength of the corresponding square is again
defined by the diameter of the circular arc: Intuitively, we can follow the
diagonal drawn dashed in Figure 3.3 from the center of the arc until we
cross the circular arc. The last point with integer coordinates will be one
of the vertices of the square.

• Finally we will connect the two sequences of line segments by another
edge (colored green in 3.3) which we will refer to as the connector edge
(since it connects the inner and the outer approximation). Those edges
also contribute to the inner approximation.

• In a practical implementation, we need to consider the possibility of an
existing edge, that is connected to one of the end points of the arc and
is routed in the direction of the connector edge (cf. Figure 3.4a). In
such a case, the port needed for the connector edge is already occupied,
which is bad since we want to create an ILP that preserves planarity
in an orthogonal drawing. However, we can solve this issue easily by
introducing another dummy edge, which we will later require to have
length 0, as depicted in Figure 3.4b (colored orange). Also later it will
turn out that we can abuse this zero length edge in the ILP for handling
it as a special case in our constraints.

Clearly, after we replaced the bent edges with outer and inner approxi-
mation, if the inner approximation stays inside the circular arc in any valid
assignment of edge lengths, we will have enough space to draw the arc with-
out intersecting other arcs or straight edges. We will consider an assignment
of edge lengths to be viable if the resulting drawing (without arcs but with
the dummy edges) is planar with one exception: Faces containing the inner
approximation excluding the faces only bounded by dummy edges may only
be drawn weakly planar at the dummy edges, where a weakly planar drawing
is defined as follows:

Definition 18 (Weakly planar drawing). A face f of a straight line draw-
ing Γ(G) of a graph G = (V,E) is drawn weakly planar at an edge e ∈ f ,
if

• Either e does not intersect any other edge along the face except those
who have a common end point (i.e. f is drawn planar at the edge e)

• or if e intersects another edge e′ ∈ f , then either e and e′ are parallel
(i.e. they overlap) or the intersection point is one of the endpoints
of either e or e′ (i.e. they touch). Further e′ is at the same side of e
as f .

20 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

(a) Quarter circle arc. (b) Half circle arc.

(c) Three quarters circle arc.

Figure 3.3: Simple approximation of the three possible arc types.

3.3. REPLACING CIRCULAR ARCS - A SIMPLE APPROXIMATION 21

(a) (b)

Figure 3.4: (a) An arc with a connected edge that is routed in the direction
of the connector edge.
(b) Practical implementation of the arc approximation with dummy edges that
will later have length 0 (colored orange).

A weakly planar drawing is a drawing, where each face is drawn without
intersections or weakly planar.

In order to further emphasize the idea of weakly planar drawings, Figure 3.5
shows an example graph drawn planar, weakly planar and not weakly planar.

The idea behind the weakly planar dummy edges is the following: We know
that the inner approximation is located inside the circular arc. Therefore we
would waste space (which still is the criterion we would like to optimize) if we
would strictly require planarity here. Instead, later in the ILP we will require
the inner approximation to at most lay tightly on the edges of the remaining
graph inside the circular arc (cf. Figure 3.6). Note that one face can be drawn
weakly planar at an edge while the other face may require strict planarity at
the same edge, e.g. in the figure you can see that the red edges coincide with
the gray area that resembles the rest of the graph while by definition they do
not have common points with the blue edges.

To conclude our discussion of the simple approximation, we still need to
discuss the edge lengths in relation to the radius of the circular arc that our
ILP needs to compute. The edges of the outer approximations are obviously
either as long as the radius or the diameter of the circular arc. For the inner
approximations however, so far we only said that the vertices on the diagonals
from the center of the arc are located on the last integer coordinate before

22 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

(a) Planar drawing. (b) Weakly planar drawing.

(c) Weakly planar drawing. (d) Not a weakly planar drawing.

(e) Not a weakly planar drawing.

Figure 3.5: Five drawings of the same graph emphasizing the idea of weakly
planar drawings. The bounded face may be drawn weakly planar at the red
edges. In the 2 weakly planar drawings edges are drawn slightly distinct instead
of overlapping for better readability.

3.3. REPLACING CIRCULAR ARCS - A SIMPLE APPROXIMATION 23

Figure 3.6: A quarter circle arc’s inner approximation laying on the rest of
the graph (schematic as gray area). Note that the graph is weakly planar at red
and green edges (i.e. the inner approximation of the circular arc).

crossing the arc. Let us first formalize the edge lengths of quarter circle arcs:

Lemma 1. In the simple approximation, quarter circle arcs with radius r
are replaced by

1. 2 edges of length r for the outer approximation.

2. 2 edges of length b r√
2
c for the inner approximation.

3. 2 edges of length d(1− 1√
2
)re for the connector edges.

Proof. As our arc forms a quarter circle and the outer approximation edges
span over this arc horizontally or vertically, those outer approximation edges
need to have length equal to the radius lo = r. For the inner approximation
edges consider the right triangle in Figure 3.7: The blue diagonal crosses the
last integer point that we want for our approximation before cutting the cir-
cular arc. If we can compute the lengths of the red edges in Figure 3.7, we can
round down their lengths and obtain the correct lengths for our inner approx-
imation. Moreover, the two red edges form a square with the blue diagonal
of length r as its diagonal. Therefore we can use Pythagoras’ theorem to
compute the length of the equally sized red edges li:

l2i + l2i = r2 =⇒ li =
r√
2

Finally, as visible in Figure 3.3a, the outer approximation’s length is equal to
the inner approximation’s length plus the connector edge’s length lc:

lo = li + lc =⇒ lc = lo − li = r − r√
2

= (1− 1√
2

)r

24 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

Figure 3.7: The point of the arc cut when moving on the diagonal away from
the center and its connection to the inner approximation edges.

Since we will round down the inner approximation’s edge length, we will have
to round up the connector’s edge length.

Following similar argumentation, we can also prove the following:

Lemma 2. In the simple approximation, arcs are replaced by approxima-
tions with edge lengths dependent on their radius r as depicted in Fig-
ure 3.8.

3.4 Building the ILP

Let G∗ = (V ∗, E∗) be the graph obtained when replacing all bent edges of the
original graph G with the simple approximation. Also, the replacing already
defines the orthogonal shape S(G∗) given an original orthogonal shape S(G).
Note that S(G∗) is an OC1 shape, i.e. every edge is either drawn horizontal
or vertical and has no bends. The ILP we are about to describe will have an
edge length variable for every edge e ∈ E∗ of the graph G∗:

l(e) ∈ N (3.1)

While in general, we will require

l(e) ≥ 1 (3.2)

for edges of the inner approximation ei we will instead demand

l(ei) ≥ 0 (3.3)

i.e. the inner approximation can collapse to a single point if the arc does not
contain any other edges.

3.4. BUILDING THE ILP 25

(a) Quarter circle arc. (b) Half circle arc.

(c) Three quarters circle arc.

Figure 3.8: Simple approximation of the three possible arc types with required
edge lengths.

26 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

Also for each circular arc a which we represent with its simple approxima-
tion we store its radius in a variable of the ILP:

r(a) ∈ N+ (3.4)

which may not be needed for the simple approximation but will prove useful
in the more sophisticated approaches in Chapter 4.

Further needed variables will be defined when we need them.4

3.4.1 Constraints for Approximation Edge Lengths

Obviously, Lemma 2 has to be encoded in linear constraints of the ILP. This
can be done easily since the lengths of all edges depend linearly - aside from
floor and ceiling functions - on the radius r(a) of the corresponding arc a.
Including floor and ceiling also is trivial since we can replace them by less
or equal and greater or equal in the ILP. Note that by doing so the inner
approximation edges may be at most as long as given by the lemma but they
may also be shorter (in fact they may even have lenght 0). This is not causing
any problem because the computed edge lengths of dummy edges is not part
of the solution and we will still check for crossings. Let ef(r) denote an edge
with length f(r) as given by Figure 3.8. We will use the following equations
to ensure correct relations between the edge lengths:

l(er)− r(a) = 0 (3.5)

l(ed(1− 1√
2

)re)−
(

1− 1√
2

)
r(a) ≥ 0 (3.6)

1√
2
r(a)− l(eb 1√

2
rc) ≥ 0 (3.7)

l(e2r)− 2r(a) = 0 (3.8)

Let e1
f(r) and e2

f(r) denote the two edges in the approximation of same length

f(r). Those two edges will be required to have the same length by the following
constraint:

l(e1
f(r))− l(e2

f(r)) = 0 (3.9)

The length of the edges e2b 1√
2
rc will be ensured by constraints that demand

the closing of faces (cf. Constraints 3.10 and 3.11).

4In the practical implementation using Gurobi it proved important to define all the vari-
ables first before adding constraints as doing so improved the performance of the ILP solver
compared to a previous code version where variables where defined on the fly. Note that
the complexity of the approach stays the same since only the loops creating the constraints
have to be passed twice - first to create needed variables, then to create the constraints.

3.4. BUILDING THE ILP 27

3.4.2 Constraints for Planarity

We will add contraints for each face f of G∗ that preserve the planarity of f .
The idea is, that if we do this for all faces then the entire graph will be planar5.
First, let us discuss the notation we will use in this section.

Definition 19 (Sets along faces). For every face f of an orthogonal shape
S(G) with fixed orientation with OC1 of a graph G the following sets can
be defined:

• the set of horizontal edges along the face Eh(f).

• the set of vertical edges along the face Ev(f).

Additionally, corresponding to any fixed cyclic order a and orientation of
the edges along the face (cf. Figure 3.9) we can also define:

• the set of leftward (w.r.t. the given cyclic orientation) edges along
the face El(f).

• the set of rightward (w.r.t. the given cyclic orientation) edges along
the face Er(f).

• the set of topward (w.r.t. the given cyclic orientation) edges along
the face Et(f).

• the set of bottomward (w.r.t. the given cyclic orientation) edges
along the face Eb(f).

aThe cyclic order is defined by the planar embedding of the graph.

Figure 3.9 also indicates a property, any face f has to fulfil: If we start
at any vertex and follow the cyclic order, we will get back to the same vertex
after having visited all edges. Therefore, the sum of the lengths of the edges
going to the left (El(f)) is the same as the sum of the edges going to the right
(Er(f)). Of course, the same holds for vertical edges. We can formulate this
as the first two planarity constraints for our ILP:

∑
er∈Er(f)

l(er)−
∑

el∈El(f)

l(el) = 0 (3.10)

5An orthogonal shape contains information about a planar embedding. A planar embed-
ding describes which faces exist in planar drawings realizing the embedding. Therefore if
we draw all the faces that are given by the embedding planar the resulting drawing will be
planar.

28 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

Figure 3.9: A bounded face of an orthogonal shape with OC1 with a given
cyclic order (numbers along the edges) and the resulting orientation of edges.
Note that the bridge edge appears twice in the cyclic order with opposite direc-
tions.

∑
et∈Et(f)

l(et)−
∑

eb∈Eb(f)

l(eb) = 0 (3.11)

Now that we have constraints that make sure our faces are closed, we still
need to ensure that the resulting drawing of each face is planar. For the ILP
we use the following formulation of planar faces:

Lemma 3. A face f of an orthogonal drawing ΓOrth(G) with OC1 of a
graph G is drawn planar if

1. there is no pair of one horizontal eh ∈ Eh(f) and one vertical edge
ev ∈ Ev(f) which do not share a common endpoint but intersect and

2. pairs of parallel bridges that do not share a common end point do not
overlap.

3. pairs of edges that have a common endpoint only intersect/overlap
in this single point.

Proof. We show this by showing that every face that is not drawn planar

1. has an intersection between a horizontal and a vertical edge that do not
share a common endpoint or

2. an overlapping pair of bridges.

We do so by distinguishing the different possibilities of crossings:

3.4. BUILDING THE ILP 29

• A horizontal and a vertical edge cross at a single point. In this case we
obviously have Case 1, i.e. a horizontal and a vertical edge intersect.

• Two parallel edges have at least one point in common, i.e. they overlap.
In this case, we further need to distinguish:

– If both edges are not bridges, each of them is connected to at least
two other edges via its endpoints, and each endpoint is connected
with at least one other edge. Also, either

∗ one of the endpoints of either edge is located between the end-
points of the other edge (cf. Figure 3.10a)

∗ both of the endpoints of one edge are located between the end-
points of the other edge (cf. Figure 3.10b)

In either case, we are done if one of the end points located between
the two end points of the other edge is connected with an edge of
perpendicular orientation (e.g. in Figure 3.10 it should be vertical)
as then we also had an intersection of a horizontal and a vertical
edge (case 1). If this is not the case, we still know that each edge is
connected to another edge at each endpoint with the same orienta-
tion (e.g. in Figure 3.10 it would be horizontal), i.e. we would have
another pair of parallel overlapping edges. So we could have two se-
quences of parallel edges that overlap. However, since faces should
not be drawn empty, we know that at some point both sequences
of edges will be connected to edges of perpendicular orientation, so
also in this case we would end up with an intersection of a horizon-
tal and a vertical edge. If we further demand that all edges have
non-zero length this perpendicular edge cannot be the connection
between the two sequences of parallel edges, i.e. we end up with
Case 1.

– If one edge is a bridge and the other one is not, we can argue
similarly to the case where both edges are not bridges. Reason for
this is a property of the bridge: Intuitively the bridge will point
into the face. But when the face should also be connected, we can
only have 2 configurations:

∗ the bridge is connected to one parallel and one perpendicular
edge (cf. Figure 3.11a)

∗ the bridge is connected to two perpendicular edges (cf. Figure
3.11b)

This means, in either case, even if the bridge is connected to a se-
quence of parallel bridges, we can follow the bridge to its connection
to the rest of the face. At some point either the non-bridge sequence
of parallel edges will be connected to a perpendicular edge or the

30 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

(a) (b)

Figure 3.10: Possibilities for overlappings of pairs of parallel edges. Note that
the edges are drawn distinct only for better readability.

(a) (b)

Figure 3.11: Possibilities for connections of bridges to the face. Dashed edges
suggest that the border of the face continues from this endpoint.

bridge ends (and then it will be connected to a perpendicular edge).
Therefore also in this case we end up with Case 1. Note that this
argument does not hold for two bridges. Therefore we need one
more case.

– If both edges are bridges by definition we have Case 2.

Now that we have an appropriate definition for planarity in OC1 drawings,
we need to encode the two conditions of Lemma 3 in constraints for our ILP.
For now we will take care of the first condition: horizontal and vertical edges
should not intersect. Again we will establish another description that is more
suitable for an ILP:

Lemma 4. A horizontal edge eh ∈ Eh(f) and a vertical edge ev ∈ Ev(f)
that do not share a common endpoint of a face f of an OC1 drawing do
not intersect if at least one of the following conditions is met:

1. The vertical edge is right of the horizontal edge (cf. Figure 3.12a).

2. The vertical edge is left of the horizontal edge (cf. Figure 3.12b).

3. The horizontal edge is on top of the vertical edge (cf. Figure 3.12c).

3.4. BUILDING THE ILP 31

(a) ”Right of” case (b) ”Left of” case (c) ”Top of” case
(d) ”Bottom of”
case

Figure 3.12: The 4 sufficient conditions for non-crossing edges.

Figure 3.13: If two edges intersect, they necessarily violate all conditions of
Lemma 4.

4. The horizontal edge is at the bottom of the vertical edge (cf. Figure
3.12d).

Proof. If there is a crossing between horizontal and vertical edges the vertical
edge will be in between the two endpoints of the horizontal edge in horizontal
direction. Also, the horizontal edge will be in between the two endpoints of
the vertical edge in vertical direction (cf. Figure 3.13). So if there is a crossing,
none of the four conditions of the lemma may be true.

Since Lemma 4 makes statements about required positions of edges rela-
tively to each other, we need to define a local coordinate system for each face
that only depends on the lengths of the edges. Intuitively we want to place the
origin of the coordinate system on a vertex (cf. Figure 3.14). Then, we can
use the cyclic order of edges to express the position of each vertex and edge
by sums of the lengths of edges. For instance, the coordinates of the yellow
vertex in the Figure can be described as (l(e1) + l(e3), l(e2) − l(e4)) where ei
corresponds to the edge with label i in the figure and l(e) is the length of the
edge e. More formally, we can define the coordinate system as follows:

Definition 20 (Local coordinate system for a face). Let e1, e2, e3, ..., ek be
the cyclic order of edges along a face f of an OC1 drawing. We define the
source of the local coordinate system to be at the intersection of e1 and
ek.

32 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

Figure 3.14: Concept of the local coordinate systems for a face. The origin of
the coordinate system is placed on a vertex (red). Then the positions of edges
and vertices can be expressed depending on the length of the edges along the
cyclic order of edges. For instance, the coordinates of the yellow vertex in the
Figure can be described as (l(e1) + l(e3), l(e2)− l(e4)) where ei corresponds to
the edge with label i in the figure and l(e) is the length of the edge e.

3.4. BUILDING THE ILP 33

For any edge ei with 1 ≤ i ≤ k let Ei = {e1, e2, ..., ei} and therefore
Ei−1 = {e1, e2, ..., ei−1}.

Then we define the following for all horizontal edges eh = ei with
1 ≤ i ≤ k:

• left(eh) =

∑

er∈Ei−1∩Er

l(er)−
∑

el∈Ei∩El

l(el) if eh ∈ El(f)∑
er∈Ei−1∩Er

l(er)−
∑

el∈Ei−1∩El

l(el) if eh ∈ Er(f)

which corresponds to the horizontal coordinate of the left endpoint
of eh.

• right(eh) =

∑

er∈Ei−1∩Er

l(er)−
∑

el∈Ei−1∩El

l(el) if eh ∈ El(f)∑
er∈Ei∩Er

l(er)−
∑

el∈Ei−1∩El

l(el) if eh ∈ Er(f)

which corresponds to the horizontal coordinate of the right endpoint
of eh.

• vertical(eh) =
∑

et∈Ei−1∩Et

l(et)−
∑

eb∈Ei−1∩Eb

l(eb)

which corresponds to the vertical coordinate of both endpoints of eh.

Further we define the following for all vertical edges ev = ei with 1 ≤
i ≤ k:

• bottom(ev) =

∑

et∈Ei−1∩Et

l(et)−
∑

eb∈Ei∩Eb

l(eb) if ev ∈ Eb(f)∑
et∈Ei−1∩Et

l(et)−
∑

eb∈Ei−1∩Eb

l(eb) if ev ∈ Et(f)

which corresponds to the vertical coordinate of the bottom endpoint
of ev.

• top(ev) =

∑

et∈Ei−1∩Et

l(et)−
∑

eb∈Ei−1∩Eb

l(eb) if ev ∈ Eb(f)∑
et∈Ei∩Et

l(et)−
∑

eb∈Ei−1∩Eb

l(eb) if ev ∈ Et(f)

which corresponds to the vertical coordinate of the top endpoint of
ev.

• horizontal(ev) =
∑

er∈Ei−1∩Er

l(er)−
∑

el∈Ei−1∩El

l(el)

which corresponds to the horizontal coordinate of both endpoints of
ev.

Note that the defined local positions only depend on sums of lengths of
edges - which are the variables of our ILP.

34 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

Next, we will formulate Lemma 4 as constraints for the ILP. First of all,
we will add new boolean variables for the pairs of edges on a face to keep track
of which of the 4 conditions are satisfied:

leftOf(eh, ev, f) ∈ {0, 1}
rightOf(eh, ev, f) ∈ {0, 1}
topOf(eh, ev, f) ∈ {0, 1}

bottomOf(eh, ev, f) ∈ {0, 1}

(3.12)

Semantically, leftOf(eh, ev, f) = 1 shall mean, that the ”left of” case as
depicted in Figure 3.12b is satisfied, while leftOf(eh, ev, f) = 0 shall state,
that it might not be the case. The other variables have similar meanings.
For short, we shall write leftOf instead of leftOf(eh, ev, f) in the following
discussion. Also, we will shorten the other variables in a similar fashion. As
Lemma 4 states, at least one of the 4 cases needs to be satisfied, so we can
add the following constraint for all pairs of horizontal eh and vertical edges ev
not sharing a common endpoint for each face f :

leftOf + rightOf + topOf + bottomOf ≥ 1 (3.13)

Now we only need to encode the four cases in a linear constraint. The goal
here is that if one of the conditions of Lemma 4 is not fulfilled, setting the
corresponding boolean variable to 0 will result in a fulfilled equation. On the
other hand, to ensure the semantic meaning of the variables, the constraints
need to ensure that a variable may only be set to 1 if the corresponding condi-
tion of Lemma 4 is fulfilled. We will use the following formulations which use
the bigM method for turning them into indicator constraints:

horizontal(ev)− right(eh)−M · rightOf ≥ −M + 1 (3.14)

left(eh)− horizontal(ev)−M · leftOf ≥ −M + 1 (3.15)

vertical(eh)− top(ev)−M · topOf ≥ −M + 1 (3.16)

bottom(ev)− vertical(eh)−M · bottomOf ≥ −M + 1 (3.17)

where M is a suitably large integer.6

6Defining how large ”suitably large” is, can be tricky. M needs to be larger than any
of the differences between coordinates of edges computed. Otherwise we may not find a
solution despite it exists (e.g. if left(eh) − horizontal(ev) 6≥ 1, it is required that M ≥

3.4. BUILDING THE ILP 35

If we look at the constraints above and ignore the summands with M
for a while, e.g. for the ”left of” case we get the following: left(eh) −
horizontal(ev) ≥ 1. This reduced constraint tells us simply speaking just
that the vertical edge needs to be at least one unit to the left of the left end
point of the horizontal edge which is exactly the ”left of” case. Now if we look
at the entire constraint again, setting leftOf = 1 we again end up with the
reduced constraint, i.e. if leftOf = 1 the ”left of” case needs to be satisfied.
On the other hand, if we set leftOf = 0, we can see that if M is significantly
large, the constraint tells us that some difference of coordinates needs to be
larger than some very negative number with large absolute value. In fact, if
we have chosen a suitable value for M than this negative value will always be
smaller than any difference of coordinates, therefore if leftOf = 0 the reduced
constraint will be ignored and the vertical edge does not need to be left of the
horizontal one. The same argumentation holds for the other three constraints.

So far we have encoded the first condition of Lemma 3 in the ILP. But
we still need to take care of the second condition: no pair of parallel bridges
is allowed to overlap. First of all, finding brigdes is easy, they appear twice
in the cyclic order of edges along a face (cf. Figure 3.9). Bridge edge pairs
which share a vertex of course need to be excluded since they overlap in this
point and only in this point. Again we will establish a suitable definition of
not overlapping:

Lemma 5. Two horizontal edges e1
h, e

2
h ∈ Eh(f) do not overlap if at least

one of the following conditions is satisfied:

1. e2
h is right of e1

h (cf. Figure 3.15a).

2. e2
h is left of e1

h (cf. Figure 3.15b).

3. e2
h is on top of e1

h (cf. Figure 3.15c).

4. e2
h is at the bottom of e1

h (cf. Figure 3.15d).

Symmetrically, one may define corresponding conditions for vertical edges
e1
v, e

2
v ∈ Ev(f)

horizontal(ev)− left(eh) + 1 because otherwise the ”left of” case is not ignored). Although
in theory we could set M to arbitrarily high values we cannot do this in a practical context
as for performance and memory reasons LP solver software is not using arbitrarily precise
data types - if M is too large, the LP solver may round both sides of the constraint to −M
and simply accept any solution for the variables. Note, that while modern LP solvers allow
for the usage of precision modes one should avoid using those unless values of M that are too
large for the normal data types are absolutely required due to the values of other coefficients
or variables in the correct solution as more precise data types need more memory and slow
down computations.

36 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

(a) ”Right of” case (b) ”Left of” case (c) ”Top of” case
(d) ”Bottom of”
case

Figure 3.15: The four sufficient conditions for non-overlapping horizontal
edges.

Proof. In order for two horizontal edges to overlap, their endpoints must have
equal vertical coordinates. So if either the ”top of” or the ”bottom of” case (3.
or 4.) is satisfied, two edges may not overlap. Further at least one end point
of one edge needs to be located in between the two end points of the second
edge. This is the case unless the left end point of one edge is to the right of
the right end point of the other edge, i.e. if either the ”right of” or the ”left
of” case (1. or 2.) is satisfied, two edges may not overlap.

Similarly to checking if edges do not cross, we will introduce new variables
to the ILP for checking which one of the conditions of Lemma 5 is satisfied. So
for a pair of two parallel bridge edges e1

b , e
2
b (horizontal or vertical) on a face

f we will add the Boolean variables:

leftOfb(e
1
b , e

2
b) ∈ {0, 1}

rightOfb(e
1
b , e

2
b) ∈ {0, 1}

topOfb(e
1
b , e

2
b) ∈ {0, 1}

bottomOfb(e
1
b , e

2
b) ∈ {0, 1}

(3.18)

Note that this time, the variables are not referenced by the face f since
bridge edges are only appear in the cyclic order of edges around one single
face. Similarly to the discussion of crossing edges, leftOfb(e

1
b , e

2
b) = 1 shall

indicate, that e2
b indeed is left of the edge e1

b . In the further discussion we
will use a shortened notation (leftOfb, rightOfb, topOfb, bottomOfb). Again,
we know that one of the four cases has to be satisfied, therefore we add the
following constraint:

leftOfb + rightOfb + topOfb + bottomOfb ≥ 1 (3.19)

The remaining constraints depend on whether the bridge edges are hori-
zontal or vertical. First, we will focus on the horizontal case. We will apply the
”big M” method as we did before for the constraints that prevent crossings:

left(e2
b)− right(e1

b)−M · rightOf ≥ −M + 1 (3.20)

3.4. BUILDING THE ILP 37

left(e1
b)− right(e2

b)−M · leftOf ≥ −M + 1 (3.21)

vertical(e2
b)− vertical(e1

b)−M · topOf ≥ −M + 1 (3.22)

vertical(e1
b)− vertical(e2

b)−M · bottomOf ≥ −M + 1 (3.23)

Since the ”big M” method is applied in a similar fashion as explained
before, we will not argue about the correctness here again. For the vertical
case we add the following constraints:

bottom(e2
b)− top(e1

b)−M · topOf ≥ −M + 1 (3.24)

bottom(e1
b)− top(e2

b)−M · bottomOf ≥ −M + 1 (3.25)

horizontal(e2
b)− horizontal(e1

b)−M · rightOf ≥ −M + 1 (3.26)

horizontal(e1
b)− horizontal(e2

b)−M · leftOf ≥ −M + 1 (3.27)

This concludes the constraints we need for ensuring planarity in a drawing.
However, when we augmented the drawing by dummy vertices, we argued that
at some edges we would only require weak planarity. Next, we need to discuss
how to alter the planarity constraints such that they will ensure weak planarity.

3.4.3 Constraints for Weak Planarity

Let us begin by recalling the concept of weakly planar drawn edges that we
introduced earlier. For weakly planar drawn edges ewp we demand that they are
either drawn planar or that crossing edges ecross are parallel or the intersection
point is one of the end points of either ewp or ecross. It is intuitively clear, that
the following lemma holds:

Lemma 6. A face f of an orthogonal drawing ΓOrth(G) with OC1 of a
graph G is drawn weakly planar at an edge ewp ∈ f if

1. if ewp ∈ Eh(f) there is no vertical edge ev ∈ Ev(f) which does not
share a common endpoint with ewp but intersects with ewp in a point
that is not an endpoint of ewp or ev

2. if ewp ∈ Ev(f) there is no horizontal edge eh ∈ Eh(f) which does not

38 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

(a) ”Right of” case (b) ”Left of” case (c) ”Top of” case
(d) ”Bottom of”
case

Figure 3.16: The four sufficient conditions for weakly planar intersections.

share a common endpoint with ewp but intersects with ewp in a point
that is not an endpoint of ewp or eh

Note that the part with overlapping bridges that can be found in Lemma 3
is omitted here since weakly planar edges by definition may overlap with par-
allel edges.

If we consider the planarity constraints introduced in the previous section,
we can observe that we do not care about parallel edges as long as they are
bridges. However, by the way we introduced edges that we want to draw
weakly planar in Section 3.3 they are never bridges. Therefore we only need
to discuss how Lemma 4 can be adopted to weakly planar edges:

Lemma 7. A horizontal edge eh ∈ Eh(f) and a vertical edge ev ∈ Ev(f)
that do not share a common endpoint of a face f of an OC1 drawing do
intersect only in one of their endpoints if at least one of the following
conditions is met:

1. The vertical edge is intersected by the right endpoint of the horizontal
edge (cf. Figure 3.16a).

2. The vertical edge is intersected by the left endpoint of the horizontal
edge (cf. Figure 3.16b).

3. The horizontal edge is intersected by the top endpoint of the vertical
edge (cf. Figure 3.16c).

4. The horizontal edge is intersected by the bottom endpoint of the ver-
tical edge (cf. Figure 3.16d).

Now we are able to formulate constraints for the ILP that ensure weak
planarity between an edge pair eh ∈ Eh(f), ev ∈ Ev(f) at a face f where
either eh or ev should be drawn weakly planar at the given face. Again, we
will need the boolean variables defined in (3.12). Also, we will need the case
distinction introduced in (3.13). Finally, we will adjust the constraint (3.14),
(3.15), (3.16), (3.17) to:

3.4. BUILDING THE ILP 39

horizontal(ev)− right(eh)−M · rightOf ≥ −M (3.28)

left(eh)− horizontal(ev)−M · leftOf ≥ −M (3.29)

vertical(eh)− top(ev)−M · topOf ≥ −M (3.30)

bottom(ev)− vertical(eh)−M · bottomOf ≥ −M (3.31)

where again M is a sufficiently large constant.

For an example, let us discuss the differences in the ”left of” cases (3.15) and
(3.29). If we set leftOf = 0 in both cases we will ignore the logic behind the
rest of the constraint. However, if leftOf = 1, we will evaluate the positions
of the edges. In (3.15) we then demand the vertical edge to be at least one
unit distance to the left of the left end point of the horizontal edge. Note that
this also is covered by (3.29). Further, (3.29) will also be satisfied if

left(eh)− horizontal(ev) = 0

i.e. the left endpoint of the horizontal edge is located at the same horizontal
coordinate as the entire vertical edge (cf. Figure 3.16b). Therefore (3.29) will
be satisfied, if the face is drawn weakly planar at the edge pair eh, ev. The
other constraints work similar.

Unfortunately, it is not enough to just use the constraints (3.28), (3.29),
(3.30), (3.31) instead of (3.14), (3.15), (3.16), (3.17) if there is at least one
weakly planar edge involved. Consider the configuration shown in Figure 3.17
where the face should be drawn weakly planar at the red edge. The two
blue edges would fulfill our current constraints for weak planarity. However,
both blue edges are on different sides of the red edges. It is easy to see that
configurations like this can be valid with the current constraints while they
still violate our understanding of the concept of faces. Therefore we need to
be more careful and only use those constraints for weak planarity that we need
for a given weakly planar drawn edge and use the normal planarity constraints
for the other cases.

3.4.4 Choosing the Correct Constraints for Edge Pairs

Edges along a face in an OC1 drawing can only be vertical and horizontal hence
the face can only be on the left, right, top or bottom of the edge (unless it is a
bridge which the dummy edges are not). Now depending on the position of a
face f w.r.t. an edge e ∈ f , we can say which cases of weakly planar crossings
we want to allow at the edge e on the face f :

40 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

Figure 3.17: An example configuration that may cause problems with the
approach so far.

• If the edge is vertical and the face is to the left of the edge, we will allow
the ”right of” case of weakly planar intersections (cf. Figure 3.16a) which
corresponds to the constraint (3.28).7

• If the edge is vertical and the face is to the right of the edge, we will
allow the ”left of” case of weakly planar intersections (cf. Figure 3.16b)
which corresponds to the constraint (3.29).

• If the edge is horizontal and the face is at the bottom of the edge, we will
allow the ”top of” case of weakly planar intersections (cf. Figure 3.16c)
which corresponds to the constraint (3.30).

• If the edge is horizontal and the face is on top of the edge, we will allow
the ”bottom of” case of weakly planar intersections (cf. Figure 3.16d)
which corresponds to the constraint (3.31).

However, allowing only weakly planar intersections in one of the four cases
is not enough. Before we can explain why, we need to define a classification of
vertices w.r.t. faces:

Definition 21 (Concave Vertices and Convex Vertices in OC1 Drawings).
Let G = (V,E) be a graph and ΓOC1(G) be an OC1 drawing of G. Further
let f be a face of G and v ∈ V a vertex on the face f that is connected
to exactly 2 edges e1 and e2 along the face f . v is called a concave vertex
(w.r.t. f) if

• e1 ⊥ e2

• the 270 degree angle between e1 and e2 is at the same side as f w.r.t.

7The case we need to allow is a bit counter-intuitive. If a face is to the left of an edge,
than also horizontal edges which we need to check for weak planarity appear on the left of
the edge. Then the vertical edge is to the right of the vertical edge, thus we need the ”right
of” case.

3.4. BUILDING THE ILP 41

Figure 3.18: An OC1 drawing with a bounded face containing 7 strictly convex
vertices (blue), 1 other convex vertex (green) and 3 concave vertices (red).

to e1 and e2.

If v is not concave, we call it a convex vertex. If v is a convex vertex, we
call it strictly convex if e1 ⊥ e2 (i.e. the 90 degree angle between e1 and
e2 is at the same side as f w.r.t. to e1 and e2).

For an illustrative example refer to Figure 3.18.

At concave vertices of the face, we may need to allow the configuration
depicted in Figure 3.19 in order to not reject valid weakly planar drawings:
The face should be drawn weakly planar at the two red edges. Therefore we
want to allow the blue edge to be drawn at the same vertical coordinate as
the red horizontal edge while the red vertical edge lies between the two end
points of the blue one. When we look at the four cases of (weak and normal)
planarity for the pair of vertical red and blue edge, we will observe, that only
the bottom of case of weak planar intersections is satisfied. We can generalize
this:

• If a vertical edge’s bottom endpoint is a concave vertex of the face and
the face should be drawn weakly planar at the vertical edge, then we
will use the constraint for weakly planar intersections for the bottom of
case (3.31) instead of the constraint for planarity for the bottom of case
(3.17).

• If a vertical edge’s top endpoint is a concave vertex of the face and the
face should be drawn weakly planar at the vertical edge, then we will
use the constraint for weakly planar intersections for the ”top of” case
(3.30) instead of the constraint for planarity for the ”top of” case (3.16).

• If a horizontal edge’s left endpoint is a concave vertex of the face and the
face should be drawn weakly planar at the horizontal edge, then we will
use the constraint for weakly planar intersections for the ”left of” case
(3.29) instead of the constraint for planarity for the ”left of” case (3.15).

42 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

Figure 3.19: A concave vertex on a face with its 2 edges of the cyclic order
of the face (colored red). The face should be drawn weakly planar at the two
red edges. Therefore the blue edge which also is part of the face can be drawn
on the same vertical coordinate as the horizontal red edge (drawn distinct for
better readability).

• If a horizontal edge’s right endpoint is a concave vertex of the face and
the face should be drawn weakly planar at the horizontal edge, then we
will use the constraint for weakly planar intersections for the ”right of”
case (3.28) instead of the constraint for planarity for the ”right of” case
(3.14).

Next, we need to discuss strictly convex vertices (as the dummy edges we
insert never meet in normal convex vertices). Figure 3.20 shows possible con-
figurations between two edges where the face should be drawn weakly planar
(red) and another edge of the same face (blue): In Figure 3.20a which shows a
valid configuration we can see that between the blue edge and the red vertical
edge both the ”top of” and the ”left of” cases of weakly planar intersections
are satisfied. We already stated that the ”left of” case shall be possible for
edges like the red vertical edge that have the face to the right side. The con-
figurations in Figures 3.20b and 3.20c show us that in contrast to concave
vertices we should not allow the ”top of” case of weakly planar intersections
to be allowed as it is fulfilled in both configurations. However the blue edge
in Figure 3.20b also satisfies the forbidden ”right of” case of weakly planar
intersection whereas the blue edge in Figure 3.20c still ”cuts” the red vertical
edge. Therefore we have to require planarity in the ”top of” case (note that
if the ”left of” case of weak planar intersections is fulfilled like in Figure 3.20a
we will still accept the solution). Again, let us generalise our findings:

• If a vertical edge’s bottom endpoint is a strictly convex vertex of the face
and the face should be drawn weakly planar at the vertical edge, then we
will still use the constraint for planarity for the bottom of case (3.17).

• If a vertical edge’s top endpoint is a strictly convex vertex of the face
and the face should be drawn weakly planar at the vertical edge, then
we will still use the constraint for planarity for the ”top of” case (3.16).

• If a horizontal edge’s left endpoint is a strictly convex vertex of the face

3.4. BUILDING THE ILP 43

(a) Valid configuration. (b) Invalid configuration.

(c) Invalid configuration.

Figure 3.20: A convex vertex on a face with its 2 edges of the cyclic order of
the face (colored red). The face should be drawn weakly planar at the two red
edges. Therefore the blue edge which also is part of the face can be drawn on the
same vertical coordinate as the horizontal red edge (drawn distinct for better
readability). However, as the (b) and (c) already indicates, also horizontal
coordinates matter here.

and the face should be drawn weakly planar at the horizontal edge, then
we will still use the constraint for planarity for the ”left of” case (3.15).

• If a horizontal edge’s right endpoint is a strictly convex vertex of the face
and the face should be drawn weakly planar at the horizontal edge, then
we will still use the constraint for planarity for the ”right of” case (3.14).

Note that we can simply set the required weak planarity cases as a property
for the dummy edges (instead of the combination of dummy edge and face)
since weak planarity for an edge is only required at one of the faces it is part
of.

To complete our discussion on constraints for weak planarity we still need
to check what happens if both the horizontal edge eh and the vertical edge ev
are edges at which their face shall be drawn weakly planar. By the way we
inserted the dummy edges each of the edges will demand for at most two cases
of weak planarity constraints (that both apply in edge pairs with edges that
are not drawn weakly planar). If both eh and ev demand for the same two cases
then those cases will also apply. If the demanded cases differ however, we will
only use the weak planarity constraints for all the cases that are demanded by
both eh and ev. This is absolutely needed since otherwise we could again get a
bad configuration as in Figure 3.17: Consider that the red edge may demand
for the ”left of” weakly planar case while both blue edges demand the ”right
of” cases instead. Then by joining the demanded cases instead of finding the
intersection of them we allowed the sequence of two blue edges to really cross
a boundary of the face which is not what we intended to do.

44 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

Figure 3.21: Zero length edges of a quarter circle arc (red) and other edges
that satisfy weak planarity as demanded by the zero length edges (blue).

Finally we also need to look back at the zero length edges as illustrated
in Figure 3.4b. First, we need to consider that the zero length edge will have
length zero in the final drawing. Therefore both its endpoints overlap and
their indicident edges should be treated as if they had a common endpoint, i.e.
they cannot overlap and no constraints should be introduced for edge pairs of
neighbored edges.

Second, those edges are really useful: We will let the zero length edge
demand for weak planarity such that a perpendicular edge may touch the zero
length edge just at the outside of the arc, i.e. at one of the endpoints of the
arc (c.f. Figure 3.21). However as a special case we will only allow this when
the second edge of the edge pair also is a dummy edge to prevent real edges to
coincide with the real vertex. On the other hand, when 2 arcs have a common
end point, then at the common vertex the weakly planar face is bounded by two
zero length edges (one of each arc): Here the zero length edge really becomes
useful. Another edge cannot demand for weakly planar constraints in such a
way that it could cut the end point of the arc as the zero length edge is also a
dummy edge that demands only for this one particular case of weakly planar
constraints that is not critical as it cannot be fulfilled by any edge inside the
face.

Now that we know when to use which constraints we have an ILP whose
solutions describe OC1 drawings which can be transformed into an SC1 draw-
ing.

3.4.5 An Objective Function for Minimizing the Total
Edge Length

The only thing remaining to finish our ILP now is defining the objective func-
tion we want to minimize. Let Arc90 be the set of quarter circle arcs, Arc180

the set of half circle arcs and Arc270 the set of three-quarters circle arcs. Fur-

3.4. BUILDING THE ILP 45

ther let Ereal = E∗ ∩ E, i.e. the set of edges that were part of the original
graph and remain unchanged in the graph where we replaced the bent edges.
Then the following objective function sums up the total edge length:∑

e∈Ereal

l(e) +
∑

a∈Arc90

π

2
r(a) +

∑
a∈Arc180

πr(a) +
∑

a∈Arc270

3π

2
r(a) (3.32)

The rest of the approach is straight-forward. We will first solve the ILP
minimizing the objective function 3.32.

If a solution could be found, we will fix the position of a single vertex
and draw the entire OC1 drawing represented by the solution of the ILP. In
this OC1 drawing the inner and outer approximations of arcs reserve enough
space to draw the arcs in between them such that no other edge will be in-
tersected. Finally we can remove all dummy edges and vertices and draw the
approximated arcs instead.

46 CHAPTER 3. AN ILP FOR SC1 DRAWINGS

Chapter 4

More Sophisticated Arc
Approximations

4.1 Limitations of the Simple Approximation

As we shall see in Chapter 5, the simple approximation already performs quite
well on commonly used benchmark test sets of graphs. However it also comes
with some limitations that we will try to resolve in this chapter. In particular
we will now discuss 3 orthogonal shapes which cannot be drawn with the simple
approximation either at all or obviously non-optimal and further investigate
what is going on. For the convenience of the reader we will draw them as a
SC1 drawing instead of an orthogonal shape.

Figure 4.1 shows the drawing of a graph where one node is incident to
two quarter circle arcs for which the approach failed to draw so far. In the
figure, the inner simple approximations of those arcs are also drawn in red.
Obviously, in this case due to the way we defined the inner approximations
they necessarily need to cross in at least one point. Therefore our ILP is unable
to find a feasible solution here. However, it will turn out that this problem
can be easily avoided as discussed in Section 4.2.

Next, we will discuss the two drawings in Figure 4.2. Both drawings are of
the same orthogonal shape. The drawing in Figure 4.2a has been succesfully
computed by the ILP using the simple approximation. Here we can observe
that the arc seems quite empty. This results from the definition of the simple
approximation which will always favor rather quadratic contents. The other
drawing in Figure 4.2b is optimal w.r.t. total edge length instead 1 and its total

1The radius of the single arc cannot be smaller as the nodes between the two endpoints
of the arc have to be placed vertically above each other as shown in the drawing. If you
look closely you may observe that the arc actually cuts one node. However the nodes are
only drawn as squares for better readability and if you would draw them as a single point
(at the center of the square) there would be no intersection.

47

48 CHAPTER 4. MORE SOPHISTICATED ARC APPROXIMATIONS

Figure 4.1: A graph with 2 arcs that have a common endpoint. The red edges
are the inner simple approximation of the arcs.

4.2. A NEW MODEL FOR 180° AND 270° CIRCULAR ARCS 49

(a) Simple approximation ILP result. (b) Optimal result.

Figure 4.2: A graph that is drawn too large with the simple approximation.

edge length is about 15 percent smaller compared to the simple approximation
result.

Finally, one can even construct orthogonal shapes which are impossible to
draw with the simple approximation approach because it forces all the contents
of an arc in a square that starts quite a distance from the endpoints of the
arcs. Figure 4.3 shows the optimal SC1 drawing of such a shape. In the figure
all the red edges have same length due to the constraints imposed by the
arcs. However, one of them (the red edge drawn dashed in the top left corner)
connects the interior of the arc with the big arc, i.e. it overlaps completely
with the connector edge. In the simple approximation model therefore it would
need to be drawn way longer than in the optimal drawing (in fact of length
d(1 − 1√

2
)Re where R is the radius of the big arc). Unfortunately then also

all the other red edges would need to be drawn with this length which leads
to the situation that the arc of radius R will contain another arc that has
radius d(1− 1√

2
)Re as well (in fact this large arc is not even contained in the

biggest arc since the arcs are ”stacked” in this orthogonal shape). In the end,
intuitively we will end up in an infinite loop. Our improved approach presented
in Section 4.3 will be able to draw the orthogonal shape depicted in Figure 4.3
in a SC1 layout and will achieve the better result for the previously discussed
shape as depicted in Figure 4.2b.

4.2 A New Model for 180° and 270° Circular

Arcs

As we have seen in Figure 4.1 so far we cannot draw a shape that has two
circular arcs which share a common endpoint if they are routed as shown
in the figure. If we could ensure that we do not do any mistakes when we
ignored intersections between the approximations of arcs that share a common

50 CHAPTER 4. MORE SOPHISTICATED ARC APPROXIMATIONS

Figure 4.3: A graph that cannot be drawn with the simple approximation
model drawn with minimum edge length.

4.2. A NEW MODEL FOR 180° AND 270° CIRCULAR ARCS 51

(a) (b) (c) (d) (e)

Figure 4.4: Possible configurations between two quarter circle arcs sharing a
common endpoint.

Figure 4.5: The 3 nodes in this configuration need to be aligned on a diagonal.

endpoint then we could draw drawings like in Figure 4.1 even with the simple
approximation ILP. Luckily, we can formulate the following:

Lemma 8. If two quarter circle arcs share a common endpoint they cannot
cross except in their common endpoint.

Proof. First of all let us recall that in smooth orthogonal drawings we require
that each port of a node is used by at most one edge. Therefore the only possi-
ble configurations for the two quarter circle arcs are those shown in Figure 4.4
(and the same configurations rotated or mirrored). It is easy to see that all
the cases except for the one depicted in Figure 4.4a are not interesting since
the arcs leave the common node in different directions.

In the one interesting case however we also know that all nodes are located
on a diagonal (cf. Figure 4.5). This means, that one arc is completely above
the diagonal while the other one is located completely below the diagonal.
Since we will draw the nodes of the graph distinct, also in this case the two
arcs will not cross except for their common endpoint.

Unfortunately we cannot extend Lemma 8 to half circle and three-quarters
circle arcs. However, we can change the way we model those larger arcs in
our ILP to still use Lemma 8 in order to overcome the problems we faced e.g.
when drawing the graph in Figure 4.1.

Instead of directly introducing an approximation for half circle and three-
quarters circle arcs as shown in Figure 3.3 we can split those arcs in 2 and 3
quarter circle arcs, respectively, which we then connect with a dummy vertex

52 CHAPTER 4. MORE SOPHISTICATED ARC APPROXIMATIONS

(a) Split half circle arc. (b) Split three quarters circle arc.

Figure 4.6: Larger arc types split in 90° arcs.

and require to have the same radius (cf. Figure 4.6). We then can use the
approximation for the quarter circle arcs for all the components of the larger
arc types and still get the same results as before when we use a common
variable for the radius of all 90° arcs that form a larger arc. Further we can
now also apply Lemma 8 which enables us to draw drawings like the one in
Figure 4.1.

4.3 A Staircase Approximation

Next we will try to improve the simple approximation itself such that less
space is reserved for drawing the arc later as we have seen that reserving too
much space (as the the simple approximation does) can result in more (cf.
Figure 4.3) or less (cf. Figure 4.2) severe issues. Also recall Figure 3.3a: The
entire face bounded by the approximation dummy edges will later not contain
any other edge and the figure already suggests that we waste quite a lot of
space in the drawing that may even be needed to find a feasible drawing.

Inspired by the simple approximation we will introduce the following stair-
case approximation that has a parameter nstaircase ∈ N+ that is part of the
input (cf. Figure 4.7):

• The simple inner approximation edges are split into nstaircase equally
sized 2 staircase inner approximation edges (red in the figure) each.

• Those inner approximation edges are connected with each other and
an endpoint of the arc by nstaircase inner connector edges (green in the
figure). Their lengths are determined such that they are as short as
possible while the arc is not crossed by the inner approximation edges.

• There are nstaircase outer approximation edges (blue in the figure). Their
lengths are such that the summed length of the first k outer approxima-
tion edges is longer than the summed length of the first k inner approx-

2If the length of the simple inner approximation edge can be divided by nstaircase the
new edges will really have equal lengths. Otherwise their lengths may differ by 1.

4.3. A STAIRCASE APPROXIMATION 53

Figure 4.7: A staircase approximation with nstaircase = 3. Note that at the
outer approximation, the yellow nodes represent two nodes connected by an
outer connector edge that for the given radius is of length 0. The dashed edges
show the old simple approximation edges.

imation edges for all 1 ≤ k ≤ nstaircase enumerating the edges from the
arc endpoints (as in the figure).

• There are nstaircase outer connector edges (yellow in the figure). Their
lengths are such that the summed length of the first k outer connector
edges is shorter than the summed length of the first k inner connector
edges for all 1 ≤ k ≤ nstaircase enumerating the edges from the arc
endpoints (as in the figure).

Note that for nstaircase = 1 the staircase approximation is identical to the
simple approximation.

Now that we have an informal idea of what the staircase approximation
should look like, we can also formulate more precisely how long we want the
edges to be:

Lemma 9. Let eki denote the k-th inner approximation edge, eko the k-th
outer approximation edge, ekic the k-th inner connector edge and ekoc the
k-th outer connector edge with 1 ≤ k ≤ nstaircase. Further let l(e) ≥ 0

54 CHAPTER 4. MORE SOPHISTICATED ARC APPROXIMATIONS

denote the length of an edge.

For a given arc with radius R the following equations hold for any k
with 1 ≤ k ≤ nstaircase:

1.
k∑
i=1

l(eki) = b α√
2
Rc

2.
k∑
i=1

l(ekic) = d(1−
√

1− α2

2
)Re

3.
k∑
i=1

l(eko) = d α√
2
Re

4.
k∑
i=1

l(ekoc) = b(1−
√

1− α2

2
)Rc

where α := k
nstaircase

.

Proof. α exactly is the ratio that we wanted to use for the inner approximation
edges. Therefore the first equation is correct as in the simple approximation
the inner approximation edge’s length was b 1√

2
Rc. Also note that we need to

always round down here since rounding up may cause the edge to cut the arc.

For the second equation consider Figure 4.8: Given an α there exists one
point on the arc that is α√

2
R above the bottom of the arc. If we draw an edge

down (red edge) we cut the horizontal edge such that the left part (green) is
equal to the sum of the edge lengths of the inner connector edges

∑k
i=1 l(e

k
ic)

which we want to compute. Also we have created an right triangle where we
know two edge lengths (as given in the figure). Therefore we can compute the
blue edge’s length l(eb) with Pythagoras’ theorem:

R2 = l(eb)
2 +

(
α√
2
R

)2

=⇒ l(eb) =

√
1− α2

2
R

Since the blue and the green edge sum up to R, we can formulate that∑k
i=1 l(e

k
ic) = d(1 −

√
1− α2

2
)Re where the ceiling is necessary to make sure

the length is the next integer length that prevents crossings.

Equations 3 and 4 are just a formulation of the fact that we wanted the
outer approximation’s edge lengths to depend on the lengths of the inner ap-
proximation - by replacing floor with ceiling function and vice versa we make
the outer approximation edges longer than the inner approximation edges and
the outer connector edges shorter than the inner approximation edges.

Another improvement we will use from now on to improve the quality of
our drawings is to also draw the face outside of the arc weakly planar at the

4.3. A STAIRCASE APPROXIMATION 55

Figure 4.8: Computation for the inner connector edge lengths.

Figure 4.9: Arc approximation with two zero length edges at each endpoint
(orange). The only weak planarity case admitted for new zero length edges
when paired with other approximation edges is indicated with the additional
black edges in the drawing.

outer approximation and outer connector edges. We can do so since the arc
is not touching the outer approximation edges except at its endpoints (cf.
Figure 4.7) which we still have to avoid from happening. Now we can benefit
from treating the zero length edges as a special case: Approximation edges
may be drawn passing through the endpoints of arcs (since approximation
edges will not appear in the final drawing) while edges also present in the final
drawing should not cross the endpoints of arcs. However, since we have only
one zero length edge at each endpoint of the arc we can only take care of one
type of other edges (horizontal or vertical) that may cross this endpoint. But
there is a simple solution for this issue: we can just insert another zero length
edge with similar properties but routed perpendicular to the already existing
(cf. Figure 4.9).

To conclude our discussion of the staircase approximation, we only need to
modify our ILP to the model. First of all, all edges eo of the outer approxima-
tion (including the outer connector edges) will satisfy:

l(eo) ≥ 0 (4.1)

56 CHAPTER 4. MORE SOPHISTICATED ARC APPROXIMATIONS

Further we need to adopt constraints (3.5) to (3.8) to the new model: Let again
eki denote the k-th inner approximation edge, eko the k-th outer approximation
edge, ekic the k-th inner connector edge and ekoc the k-th outer connector edge
with 1 ≤ k ≤ nstaircase. Then we will add the following constraints to our ILP
in order to implement Lemma 9:

α√
2
R−

k∑
i=1

l(eki) ≥ 0 (4.2)

k∑
i=1

l(ekic)−

(
1−

√
1− α2

2

)
R ≥ 0 (4.3)

k∑
i=1

l(eko)−
α√
2
R ≥ 0 (4.4)

(
1−

√
1− α2

2

)
R−

k∑
i=1

l(ekoc) ≥ 0 (4.5)

where α := k
nstaircase

.

The staircase approximation successfully solves the issues we had observed
with the simple approximation. In fact, the drawing Figure 4.2b was drawn of
the staircase approximation and nstaircase = 25. Also, even for nstaircase = 2 the
staircase approximation can draw the orthogonal shape depicted in Figure 4.3
(however not as optimal as in the figure). On the other hand, at first glance
it may seem difficult to argue about whether the staircase approximation will
find a correct solution if a perfect smooth orthogonal drawing for a given
orthogonal shape. Therefore in the next section we will introduce another way
to approximate the arcs of the input shape that is motivated by properties of
any SC1 drawing.

4.4 A Provably Optimal Approximation

When we approximate arcs with sequences of horizontal and vertical line se-
quences we may also wonder if we can do so in such a way that it is totally
equivalent to drawing the arc. Of course, if this is possible, we also would like
to know how complex such an approach is w.r.t. time and space consumption
so we can argue about the practical usefulness.

First of all, let us recall, that there are three different kinds of intersections
in the final drawing that we want to prevent from happening:

1. Intersections between two straight-line edges are easily prevented by the
noncrossing constraints of the ILP.

4.4. A PROVABLY OPTIMAL APPROXIMATION 57

Figure 4.10: Minimally optimal approximation.

2. Intersections between a straight-line edge and an arc need to be prevented
by the fact, that the straight-line edge is at most laying on the outer or
inner approximation of the arc (i.e. weakly planar case).

3. Intersections between arcs and arcs are prevented such that their approx-
imations are at most intersecting in a weakly planar fashion.

For Cases 2 and 3 we need to discuss how we can replace the arcs in such a
way that if we replace the arcs of a given SC1 drawing we will end up with an
OC1 drawing which is planar or weakly planar at faces where this is allowed.

It is easy to see that we can replace each arc by horizontal and vertical
line segments, so that each integer point inside the arc is either inside the face
bounded by the inner approximation or overlaps with the inner approxima-
tion (cf. Figure 4.10). The same of course also shall be true for the outer
approximation. We will call this type of approximation minimally optimal as
we only reserve as much space as absolutely needed with the minimum number
of straight-line edges.

Lemma 10. The minimally optimal approximation of a quarter circle arc
with radius R consists of Θ(R) edges.

Proof. We can split the approximation into two parts along the diagonal of the
arc (cf. Figure 4.11) with the same number of edges. Therefore, we will only
discuss the half of the arc approximation to the bottom left of the diagonal
in the figure. For the inner approximation (red) for each unit of horizontal
distance between the bottom left arc endpoint and the last integer point inside
the arc on the diagonal we can observe, that we need a horizontal and a vertical
edge. As shown before, the last integer point has a horizontal distance of
d(1− 1√

2
)Re from the endpoint of the arc. Note that due to parity we have one

edge in the bottom left half that reaches into the other half of the arc. This edge
later will be assigned length 0. For the outer approximation (blue) we insert

58 CHAPTER 4. MORE SOPHISTICATED ARC APPROXIMATIONS

Figure 4.11: One half of the minimally optimal approximation.

2 edges (one vertical and one horizontal) for each unit of horizontal distance
between the bottom left arc endpoint and the first integer point outside the
arc on the diagonal. It is easy to see, that here we insert 2b(1− 1√

2
)Rc edges.

Therefore in total we need 2d(1− 1√
2
)Re+ 2b(1− 1√

2
)Rc = Θ(R) edges.

The problem we are still facing is that we do not know the radii of arcs
in advance. But fortunately, we can oversample instead. Oversampling here
means that we compute the approximation and the exact edge lengths for a
very large arc of radius R∗. For smaller arcs of radius R << R∗ we still use
the same approximation and scale the edge lengths by a factor of R

R∗
.3

Lemma 11. Oversampling, i.e. using the approximation and constraints
for a larger radius R∗ >> R, yields correct results for the radius R.

Proof. As we have already shown half of the approximation edges (cf. Fig-
ure 4.11) when not oversampling have length 1. The lengths of the other edges
(for the bottom left part of the approximation) depend on the vertical coor-
dinates of the arc at multiples of 1 unit of distance right of the bottom left
arc endpoint. When we now scale an minimally optimal approximation for a
radius R∗ down to R we have more staircase steps with smaller distances to
each other (cf. Figure 4.12; each of the points will contribute 2 edges for the
inner approximation). It is easy to see that we have enough edges to emulate

3The division by R∗ can be done when formulating the ILP, the multiplication with R
then yields a linear constraint.

4.4. A PROVABLY OPTIMAL APPROXIMATION 59

Figure 4.12: Oversampling in the minimally optimal approximation. Yellow
points are part of the bottom left half of the approximation, green points are
part of the top right half of the approximation.

the correct minimally optimal approximation for radius R (where some of the
edges will have length 0 since we have to many).

The other important part is, that the distances between sample points are
smaller when using the approximation forR∗. IfR∗ >> R we can safely assume
that the oversampling is so dense that for every vertex v in the minimally
optimal approximation for R we can find a vertex in the minimally optimal
approximation for R∗ whose next integer point in the direction of the center
of the arc is where we would draw v.

Now that we know we can oversample, we would like to compute the largest
possible radius Rmax that is necessary to draw in a minimum edge length SC1

drawing of a graph with n nodes. Since in Lemma 11 we assumed R∗ >> R, it
would also be useful to overestimate Rmax so that this assumption is satisfied.

Lemma 12. The arcs in an SC1 drawing of a graph G with n nodes and
minimum total edge length for a given orthogonal shape have a maximum
radius of Rmax < 3n.

Proof. We will prove this by induction. First consider a graph with n = 2
nodes. Here we can only have a single arc of radius 1 (cf. Figure 4.13a).
Clearly, 1 < 3n = 9.

Let us assume, that for the previous value of n the entire graph completely
filled a square shape of area 3n×3n (cf. Figure 4.13b). Also let us assume that

60 CHAPTER 4. MORE SOPHISTICATED ARC APPROXIMATIONS

(a) (b)

(c) (d)

Figure 4.13: Proof for an upper bound of Rmax.

for any given integer coordinate on the border of the square we can connect
to it with an edge from the outside.

Then for n + 1 nodes we want to place the (n + 1)-th node outside of the
square shape for n nodes. This is a safe assumption since if we would place it
inside of the square we could have chosen another order of the nodes such that
the next node would always be outside of the graph of the previous nodes (cf.
the canonical representation introduced in [DFPP90]).

If we want to connect the new node to the square shape and by doing so
maximize the total area required, our ”best” bet is to place and connect the
new node as shown in Figure 4.13c. Placing the new node over one of the sides
of the square is worse as we cannot build the half circle arc then to place the
vertex 3n over the old graph whereas if we want to place it on the extension of
the diagonal of the square we also cannot force the vertex to be placed further
away than a smaller number of units as building two large arcs then becomes
difficult.

Finally, we build the bounding square again which now is of size 3n+1×3n+1

and claim that we cannot get a larger arc than the one connecting the endpoints
of the diagonal of the square shape (cf. Figure 4.13d). This arc is of radius
3n+1.

Now that we limited the number of edges we create when oversampling, we
can prevent crossings between arcs and straight-line edges with the minimally
optimal approximation. However, in order to show that this kind of approxi-
mation will always find an SC1 drawing if such a drawing exists, we also need
to consider crossings between two arcs.

In general, two arcs may be arbitrarily close to each other. This makes
it a bit harder than preventing crossings between arcs and straight-line edges
while also not ignoring correct solutions since if two arcs are drawn very close

4.5. FURTHER CONSIDERATIONS 61

to each other, their approximations may cut. On the other hand, it is easy
to see that if one drawing of minimum edge length exists, there also exist
infinitely many other drawings where every edge length (of straight-line edges)
and every radius is multiplied with a scalar integer factor s ≥ 1. If s increases,
the minimum distance between any two arcs decreases. If s becomes large
enough, the approximations of any two arcs will not intersect anymore and
the s times larger drawing is a feasible solution of the ILP using the minimally
optimal approximation. We can formulate our findings as follows:

Theorem 1. There exists an exponential time and exponential space re-
duction from the problem of finding a SC1 drawing given an orthogonal
shape to ILP.

Proof. Oversampling the input shape with the minimally optimal approxima-
tion according to Lemmata 10 and 12 needs exponential many edges that need
to be stored and created hence the exponential time and exponential space
consumption.

The only thing that prevents us from finding the drawing with minimum
edge length are arcs that are really close to each other.

Theorem 2. Let ∆ < 1 be the minimum distance between any two arcs in
the drawing with minimum edge length in either x or y direction. Then if
we scale the grid (in the constraints) by a factor of 1

∆
the minimally optimal

approximation ILP will compute the minimum edge length drawing.

Proof. If we scale the grid by 1
∆

the new minimum distance between any two
arcs is 1. If two arcs have a distance of at least 1, their minimally optimal
approximations at most overlap (cf. Figure 4.10; all integer coordinates inside
respectively outside of the arc are not reserved for arc drawing).

4.5 Further Considerations

As we have seen in the previous section, if we oversample we can ensure to
find a drawing, if one exists. However, in a practical application we cannot
hope to be allowed to create exponentially many approximation edges if we
want to achieve a reasonable running time4. In a practical context, we rather
need to subsample, i.e. using an approximation of a smaller radius on a larger
radius. It turns out that if we have to subsample, the minimally optimal

4While already the creation of all those edges would take exponential, the runtime of the
ILP solver would be even worse.

62 CHAPTER 4. MORE SOPHISTICATED ARC APPROXIMATIONS

approximation performs worse than a staircase approximation with the same
number of edges (cf. 4.14). Therefore, in the practical evaluation we will focus
on the staircase approximation.

Also we do not lose the guarantee of finding a solution if one exists:

Corollary 1. The staircase approximation ILP will find a solution for the
SC1 drawing problem for a given orthogonal shape if a feasible drawing
exists.

Proof. The reason for this is, that also the staircase approximation may reserve
the same area as the minimally optimal approximation does. When we recall
Figure 4.3, we can observe that the distance between sampling points increases
until we reach the diagonal of the arc. Therefore we only have to ensure, that
the last connector edge has a length smaller than 1 in an arc of radius Rmax.
We will skip the computation of a feasible nstaircase as it is not practically
relevant due to exponential runtime and exponential space requirements.

Although we could guarantee to find solutions in Theorem 1 and Corollary 1
there are two assumptions underlying those, that we have not spoken about
yet:

1. Arcs may not cross through points (x, y) ∈ Z2 unless the points are those
where the tangent of the arc is either horizontal or vertical. This depends
on the actual radius R of the arc. Not for all radii, we can find such a
point.

In order to ensure planarity then, we would first need to ensure, that
the approximations are drawn as close to the arc as possible. So far we
solve the floor and ceiling functions in the edge lengths computations by
greater equal constraints and the fact, that reserving more space for the
arc is not essential as long as the minimum required space is part of the
solution space.

Then we could use bigM formulations and indicator constraints to check
if outer and inner approximation overlap (which is the case if there is an
integer coordinates point). This would enable us to decide in this specific
case to use strict planarity constraints instead.

Since this case could not be observed in the practical evaluation, it is not
implemented in the practical implementation accompanying this thesis
as more constraints also mean a worse performance. However, one should
know that this case may occur.

2. The second issue for the staircase approximation is parity. In the stair-
case approximation we assume that the last integer point of the diagonal

4.5. FURTHER CONSIDERATIONS 63

Figure 4.14: Subsampling an arc with the minimally optimal approximation
and the staircase approximation with the same number of edges as in the sub-
sampling. The green approximation is the minimally optimal approximation for
the radius of the arc. The red area shows which parts are not covered by the
subsampling whereas the blue area shows which parts are not covered by the
staircase approximation. Purple areas occur where the two other cases overlap.

64 CHAPTER 4. MORE SOPHISTICATED ARC APPROXIMATIONS

is closer to the arc than its two neighbored vertices on the inner approx-
imation (cf. Figure 4.7). However this may not necessarily be the case
(cf. Figure 4.10).

As we want to subsample in a practical context and therefore reserve
more space for the arc drawing than absolutely necessary, this difference
is not relevant. Also note, that since we do not know which parity will be
needed in advance, this will often lead to edges of length zero (depending
on the parity) which still need to be checked for planarity constraints.

While it may be disappointing that we again have to restrict our guarantees
of finding a solution if one exists, we should rather focus on the gains from
those 2 simplifications: In a practical context problems may never be such that
only one family of solutions (scaled versions of a single drawing) exist, however
the speed-up due to less constraints will be relevant every time we will apply
the ILP approach.

Chapter 5

Practical Evaluation

5.1 Experimental Setup

The staircase approximation ILP as introduced in the previous chapters was
implemented in Java1. The graph drawing framework yFiles2 is used for
loading and saving graph files as well as managing and drawing graphs once
loaded in the main memory from a file. For solving the ILP, the solver Gurobi3

was chosen because of the benefit that it can be managed from a Java program
(e.g. creating variables, reading solutions, ...) and therefore not requiring to
implement a communication. In contrast to the general algorithm, the imple-
mentation expects the input orthogonal shape to be drawn as an orthogonal
grid drawing. This however has the benefit, that the orthogonal shape can
easily be stored in the GraphML format4.

As test sets we referred to two benchmark sets commonly used in graph
drawing: the Rome Graphs and the North Graphs (also known as AT&T
Graphs)5. Unfortunately, not all of the graphs in those test sets have max-
imum degree 4 or less. In order to make all graphs respect this constraint,
for graphs with higher maximum degree sequentially edges from nodes with
degree higher than 4 were removed until no node had degree larger than four6.
If the graph was disconnected in the process, we split it into its connected
components. Components which did not contain any edges where removed.

1Available at https://java.com/download/.
2Available at https://www.yworks.com/products/yfiles.
3Available at http://www.gurobi.com/products/gurobi-optimizer. For academic

users as of now there are free academic licenses.
4For more information on the GraphML format refer to http://graphml.graphdrawing.

org/.
5Both of which can be downloaded from http://graphdrawing.org/data.html.
6For this purpose once the graph was loaded by yFiles, a NodeCursor object was created

with the Graph.nodes() method and used for iterating over nodes of the graph. For details
on the used object and methods, refer to http://docs.yworks.com/yfiles/doc/api/.

65

https://java.com/download/
https://www.yworks.com/products/yfiles
http://www.gurobi.com/products/gurobi-optimizer
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
http://graphdrawing.org/data.html
http://docs.yworks.com/yfiles/doc/api/

66 CHAPTER 5. PRACTICAL EVALUATION

Table 5.1: Number of graphs drawn successfully by the two approaches.

Test Set Graphs in Test Set
Graphs drawn
with nstaircase = 1

Graphs drawn
with nstaircase = 2

Rome Graphs 16134 9864 (61.14 %) 9878 (61.22 %)
North Graphs 2865 2414 (84.26 %) 2415 (84.29 %)

Graphs were then embedded with the PlanarInformation class of yFiles and
an orthogonal shape was computed with an implementation of Tamassia’s
min-flow algorithm7. The edge lengths were then fixed to minimal lengths
with an ILP approach8.

All of the 18999 graphs (given as orthogonal drawings) in the test sets
(16134 graphs or components for the Rome graphs and 2865 for the North
graphs) created by this procedure were drawn with both nstaircase = 1 and
nstaircase = 2 (in both cases M = 1000). Already for nstaircase = 3 it could be
observed that the linear program solver would need more than 20 hours for
the ILP created by the staircase approximation for some graphs. Therefore we
did not complete the test for nstaircase = 3 as the approach did not seem to be
practical anymore.

All experiments where executed on a 64 bit Ubuntu 14.04 ma-
chine with 15.6GiB RAM and 4 Intel® Core™ i5-4590 pro-
cessors running at 3.30GHz. Time was measured with Java’s
java.lang.System.currentTimeMillis() method9.

5.2 Experimental Results

For both test sets, both approaches (nstaircase = 1, i.e. the simple approx-
imation, and nstaircase = 2) managed to draw more than 60 % of the given
orthogonal shapes (cf. Table 5.1) as SC1 drawings. In both test sets, there
were a few orthogonal shapes (14 and 1, respectively) that could only be drawn
with the ILP using nstaircase = 2. The graphs only drawn with the more pre-
cise approach were among the graphs that where drawn with largest total edge
length and also were rather dense (|E| ≈ 1.5|V |; cf. Table 5.2).

However, there are also qualitative differences between the two approaches
(cf. Figure 5.1). Further we can observe differences in the performance on

7The min-flow network implementation was kindly provided by Robert Krug who
developed it during his work on Slanted Orthogonal Drawings [BKK+14]. Only the creation
of the orthogonal shape based on the result of the min-flow network was missing.

8Edge lengths can also be computed in polynomial time with a flow network approach
however code written for the Smog ILP could be reused.

9Refer to https://docs.oracle.com/javase/7/docs/api/java/lang/System.html

for the documentation for this method.

https://docs.oracle.com/javase/7/docs/api/java/lang/System.html

5.2. EXPERIMENTAL RESULTS 67

Table 5.2: Statistics of graphs only drawn with nstaircase = 2.

Graph Name Test Set Total Edge Length |V | |E| #(bent edges)
g.27.16 North 286.2345024704 32 47 10

grafo10151.94.0 Rome 3580.80075250733 132 202 25
grafo10557.98.0 Rome 2076.75212995925 113 153 14
grafo10588.93.0 Rome 7191.35375555133 112 154 17
grafo10634.96.0 Rome 2153.83179278309 114 155 17
grafo10868.96 Rome 1574.21676947629 116 148 17

grafo10954.94.0 Rome 3211.33177771091 102 133 9
grafo10993.95.0 Rome 5657.55288246658 131 194 31
grafo11350.91 Rome 2578.53090462617 109 150 17
grafo4401.57.0 Rome 665.438024953723 60 78 14
grafo8619.84.0 Rome 4931.53087448181 103 146 14
grafo9118.65 Rome 1127.5530633327 73 94 15
grafo9252.84 Rome 5873.27412287184 114 168 23

grafo9633.64.0 Rome 1667.8450699204 80 112 14
grafo9701.84.0 Rome 1014.7079331236 95 123 12

the two test sets: In the north test set, nstaircase = 1 often sufficed to draw
the graph optimal, therefore the scatter plot almost forms a straight line with
slope 1 (the linear regression function of LibreOffice Calc10 computed a
slope of 0.956). On the other hand, in the Rome graphs test set clearly the
ILP with nstaircase = 2 often performed better - although there are still quite
a lot of data points where both approaches performed equally well. This can
be attributed to the following:

• Since we split the graph into its disconnected components after we dis-
connected it by removing edges to obtain a feasible maximum degree,
quite a lot of very simple graphs were created that can be drawn orthog-
onally without any bends.

• There are graphs that can be drawn as an OC1 drawing in the original
test set.

• There are also quite a lot of graphs where bend minimal orthogonal
shapes do not contain arcs which cannot intersect with other parts of the
face they are contained in, i.e. they can be drawn as small as possible.

Since also in the further analysis the North graphs proved rather uninteresting
(only slight differences between the two approaches. As both could draw many
of the rather simple graphs equally well), we shall focus only on the Rome
graphs from now on.

10Available at https://www.libreoffice.org/.

https://www.libreoffice.org/

68 CHAPTER 5. PRACTICAL EVALUATION

Of course we would also like to know which parameters of an input shape
define how small we can draw an SC1 drawing and how long we will need
for computing the drawing. We will observe the effects of the following three
parameters of the input shape:

• The number of vertices |V | is an obvious choice, as for most algorithms
the input size defines its runtime. On the other hand, we are using an
ILP approach and it is often hard to track down what really makes an
ILP hard to solve.

• The density of the graph measured by |E|
|V | is another natural choice for

our approach. A higher density can lead to more bends and therefore
to more strict restrictions for the position of vertices w.r.t. the position
of other vertices. Also, it may increase the likelihood that an arc is
not empty but other edges of the face are reaching inside the arc and
therefore requiring us to draw the arc big enough to not cut other edges.

• The bent edge ratio measured by #(arcs)
|E| might also be important since

more bends result in more severe restrictions. However, it should be
noted that also very easy drawings can achieve a high bent edge ratio,
e.g. the graph in Figure 5.2.

In order to argue about the quality of the two parameter settings
(nstaircase = 1 and nstaircase = 2), we will use the following measurements
averaged over values of the input parameters:

• The Average Total Edge Length (for short ATEL) is directly computed
by our ILP as the objective function. We will average over a given input
parameter value (i.e. number of vertices, density, bent edge ratio).

• The Average Computation Time (for short ACT) is the average time our
approach needed for the computation for a given input parameter value.

• The Average of Average Edge Length (for short AAEL) is the average of
the average edge lengths in the computed drawing for each graph that
has the given input parameter value.

When analyzing depending on the number of vertices |V |, we can observe
the results shown in Figure 5.3. The total edge length as well as the average
edge length increase with the number of vertices in a parabolic fashion. This is
not surprising since we have seen before that in the worst case our drawing size
can increase exponentially in |V |. On the other hand, when investigating the
time needed, we can observe the biggest spikes not at the largest numbers of
vertices. Also, when using a logarithmic scale for the ACT (cf. Figure 5.3d), we
can see that besides that spikes occur more often with an increasing number of

5.2. EXPERIMENTAL RESULTS 69

(a) Scatter plot for Rome graphs.

(b) Scatter plot for North graphs.

Figure 5.1: Scatter plots with linear regression (red) for the performance of
both approaches for both test sets. Each data point (blue squares) resembles a
graph drawn by both approaches.

Figure 5.2: An easy to draw graph with rather high bent edge ratio of value
1
3 .

70 CHAPTER 5. PRACTICAL EVALUATION

(a) ATEL. (b) AAEL.

(c) ACT. (d) ACT (in logarithmic scale).

Figure 5.3: All three measurements dependent on the input size of the graph
|V | (Figures (c) and (d) both show the ACT where a logarithmic scale is used
in (d)). Results for nstaircase = 1 are drawn in blue, results for nstaircase = 2 are
drawn in red.

vertices, the base line of needed time rises rather slowly in |V |. Also, nstaircase =
2 achieves better edge lengths for increasing |V | whereas also the runtime
increases faster than for nstaircase = 1.

When analyzing for the density of the graphs, we can observe less distorted
results (cf. Figure 5.4). Both ATEL and AAEL increase smoothly with the
density (the drop-off at the last value for AAEL may be attributed to the fact
that the sample size for this value is 1). However, nstaircase = 2 performs even
better w.r.t. AAEL than w.r.t. ATEL compared to nstaircase = 1. Also, we
can observe that the time needed increases with density. We can observe, that
the large spikes start to occur when the density starts to be greater than 1
(i.e. if the graph is not a tree) and do so for nstaircase = 2 for the rest of our
density samples. On the other hand, again we can see clear spikes: Not all
ILPs for large densities require much time to compute, other can still be solved
relatively fast. When we analyze the ACT in logarithmic scale, we can observe
that the baseline of time needed hugely increases between |E|/|V | = 0.9 and
|E|/|V | = 1.1 but then more or less stays the same. Also note that there seems
to be large distortion in the interval between |E|/|V | = 1.05 and |E|/|V | = 1.1

5.2. EXPERIMENTAL RESULTS 71

(a) ATEL. (b) AAEL.

(c) ACT. (d) ACT (in logarithmic scale).

Figure 5.4: All three measurements dependent on the density of the graph |E||V |
(Figures (c) and (d) both show the ACT where a logarithmic scale is used in
(d)). Results for nstaircase = 1 are drawn in blue, results for nstaircase = 2 are
drawn in red.

caused by the presence of spikes destroying the continuity of the curve.

For the bent edge ratio unfortunately we cannot observe a clear pattern,
as it seems to be greatly influenced by the effect of easy drawings with high
bent edge ratios (cf. Figure 5.5). The approach with nstaircase = 2 again needs
more time for computation for literally all bent edge ratios but also performs
significantly better for bent edge ratios in the interval [0.05..0.2] (which might
be the interval, where easy to draw graphs are not so often present). While this
still seems to indicate that the bent edge ratio has an effect on performance,
we will not analyze this parameter further as no clear pattern emerged. Also
note that the decline in ACT with increasing bent edge ratio as observable in
Figure 5.5d might be caused by the presence of those easy drawings with high
bent edge ratios.

Spikes in computation time reached maximum values of 2, 959, 604ms
(0.822h) for nstaircase = 1 respectively 6, 968, 163ms (1.936h) for nstaircase = 2.
This result is not surprising as ILP solvers are known for having exponential
worst case run time and just shows that the ILP for finding a SC1 drawing can
be hard depending on the input orthogonal shape. Interestingly, those spikes

72 CHAPTER 5. PRACTICAL EVALUATION

(a) ATEL. (b) AAEL.

(c) ACT. (d) ACT (in logarithmic scale).

Figure 5.5: All three measurements dependent on the bent edge ratio of the
graph (Figures (c) and (d) both show the ACT where a logarithmic scale is used
in (d)). Results for nstaircase = 1 are drawn in blue, results for nstaircase = 2 are
drawn in red.

5.2. EXPERIMENTAL RESULTS 73

(a) Dependent on |V |. (b) Dependent on |E||V | .

Figure 5.6: ADT dependent on graph size and density. Results for nstaircase =
1 are drawn in blue, results for nstaircase = 2 are drawn in red.

occurred when drawing different graphs. Nevertheless, for the two graphs with
largest spikes, also the other approach needed much time for computing a solu-
tion. At its largest spike, nstaircase = 1 needed more time than nstaircase = 2 in
the experimental run, however this result could not be replicated. In particu-
lar, when trying to replicate it, the ILP with nstaircase = 2 needed far longer to
be solved indicating that in the experimental run, the ILP solver might have
branched differently and therefore terminated faster.

To conclude our discussion of the experimental results, we can also consider
how long it takes our ILP approach to detect when a graph cannot be drawn as
a SC1 drawing depending on nstaircase, i.e. we can measure the Average Decli-
nation Time (ADT) dependent on either the number of vertices or the density
of the graph (cf. Figure 5.6). Again we can observe that the density plot is by
far smoother than the plot depending on the number of vertices. Further, we
can observe that already for |V | = 6 (cf. Figure 5.7) there were graphs that

could not be drawn with SC1 whereas only for densities |E||V | ≥ 1 there were
graphs which had this property. The average declination time increases both
with graph size and graph density for the following reasons: First of all, there
are more constraints that need to be checked for their feasibility. Second, the
more variables there are in an ILP (especially the boolean indicator variables
for intersections) the more likely it is that after a given number of branches
the LP-relaxation is still feasible. In particular the LP-relaxation might not
become infeasible until all indicator variables for the same edge pair have been
branched (i.e. they can only take integer values).

Since we got the smoothest dependencies between our measurements and
the density of the graph while measurements dependent on the graph size
yielded similar yet more distorted results, it may also be worth analyzing
properties of the test set. It turns out that there is a significant correlation
between the number of vertices and the density of the graphs in the Rome

74 CHAPTER 5. PRACTICAL EVALUATION

Figure 5.7: An orthogonal shape of a graph with just 6 vertices that cannot
be realized as a SC1 drawing. Because of the edge with 2 bends (which would
be drawn as a half circle arc), both red vertices must have the same horizontal
coordinate. However, both are connected to the yellow vertex 3. Since the red
vertex 1 is connected with a quarter circle arc to 3, it cannot have the same
horizontal coordinate. On the other hand, 2 is connected with a straight line to
3 and must have the same horizontal coordinate.

Figure 5.8: Average density of the graphs in the test set depending on the
number of vertices. The large slope for small numbers of vertices can be par-
tially explained by the fact that many of the small graphs were created in our
preprocessing where we disconnected larger graphs by removing edges.

graphs test set (cf. Figure 5.8). Therefore it may be the case that the total
edge lengths computed by both parameter settings differ for larger graph sizes
only significantly due to the fact that the test set’s average density increases
with the graph size. Judging from our results and this bias in the test set,
it seems the only parameter we can be really confident about influencing the
difference in performance of both algorithms, is the density of the graph.

Chapter 6

Discussion

6.1 Discussion of Our Results

Our practical evaluation suggests that our polynomial time reduction with a
fixed nstaircase from drawing an orthogonal shape with SC1 to an ILP can be
applied efficiently in a practical context. In particular, even for nstaircase = 1,
which is identical to the simple arc approximation, most of the graphs in
the benchmark test sets could already be drawn. The benchmark test of the
more sophisticated staircase approximation with nstaircase = 2 showed, that
only 15 more orthogonal shapes could be drawn out of the 6,721 test shapes
which could not be drawn with the simple arc approximation1. This indicates
that cases which require more precise arc approximations could be very rare
in practical settings making the simple approximation ILP a viable choice in
most cases.

Nevertheless, especially for graphs of larger size and density, the staircase
approximation with nstaircase = 2 could improve the total edge length required
for the computed drawing. The simple approximation always reserves square-
shaped space for its contents, if the content is not square shaped then there
can be much unused area. Further, the inner connector edge lengths are large
in the simple approximation and can cause edges in the output drawing to also
have the same length. Those patterns are easy to observe. Therefore, if an
arc has been drawn too large by the simple approximation we can apply the
staircase approximation to achieve better results. Also, if we should encounter
a graph which cannot be drawn with the simple approximation we can still
use the staircase approximation with nstaircase = 2 to possibly find a solution.

Several of the orthogonal shapes rejected by the staircase approximation in
the practical evaluation were manually investigated. For all the the observed
shapes we could explain why they cannot be drawn as a perfect smooth or-

1In total, 18,999 were evaluated.

75

76 CHAPTER 6. DISCUSSION

thogonal drawing. Further we identified local configurations in those shapes
that do not admit for a perfect smooth orthogonal drawing. These forbidden
local configurations will be discussed in Section 6.5. While we did not check
every rejected orthogonal shape due to the fact that it is not yet known which
properties an orthogonal shape has to fulfil in order to be realizable as an SC1

drawing. Therefore we could not check them automatically. It still suggests
that nstaircase = 2 might be enough.

However despite the great performance on benchmark test sets, there is no
guarantee for a fixed nstaircase that our approach will find a drawing even if
one exists. In particular, judging by our current knowledge, we need to assume
that there are orthogonal shapes which only admit for one special family of
perfect smooth orthogonal drawings which is characterized as follows: Each
drawing in the family can be obtained from any other drawing of the family
by only scaling all edge lengths and radii by the same factor. If we could prove
that there is always more freedom in the choices of edge lengths we might be
able to guarantee a drawing for nstaircase = 2.

6.2 Comments on the Runtime

The presented approach shows runtime behaviour typical for an ILP. In Chap-
ter 5 we could observe an increase in average computation time along with the
size and density of the graph (which were two properties of the benchmark
that correlated), i.e. with an increasing complexity of the created ILP. While
the baseline of average computation time retained good values, spikes of large
magnitude could also be observed for denser and larger graphs.

When using ILP it is always important to remember that it is a NP-
hard problem. Therefore we need to expect that there exist difficult instances
which cannot be solved in polynomial time. In particular, ILP solvers use the
Branch & Bound algorithm (as introduced in Chapter 2) among other tech-
niques. Branch & Bound does not solve integer solutions directly but operates
on LP-Relaxations of the problem which are created by branching variables.
Branching means that additional constraints are imposed on variables that are
not assigned integer values in the solution of the previous LP-Relaxation cre-
ating 2 additional LP-Relaxations that need to be solved. In principle every
integer decision variable can be branched multiple times until the ILP solver
only has LP-Relaxations left that have worse objective function values than
the best known integer solution bound. Thus exponentially many subproblems
can be created before the final solution is known.

The runtime is mostly defined by the time the ILP solver needs for compu-
tation, replacing the arcs and creating the ILP can be done in quadratic time
(we replace arcs by a constant number of edges and we insert constraints for
edge pairs). The fact that we created hard ILP instances with our approach

6.3. NEARLY PERFECT SMOOTH ORTHOGONAL DRAWINGS 77

indicates that drawing an orthogonal shape with SC1 could in fact be a hard
problem but for now the complexity of this problem remains unknown.

6.3 Nearly Perfect Smooth Orthogonal Draw-

ings

In this section we will discuss a concept on how to resolve a pattern that
usually emerged in SC1 drawings that were amongst the graphs with largest
total edge length in our evaluation (cf. Figure 6.12):

1. A rather dense part of the graph can still be drawn effectively with SC1

using rather few space (blue in the figure).

2. An arc’s radius has to be equal to the height or width of the dense part
(green). The arc then needs as much space as the dense blue part of the
graph.

3. The pattern repeats: Another arc’s radius (red) has to be larger than
the radius of the previously drawn radius (green).

In very large drawings, this pattern will result in the worst case exponential
area requirement as proven by Bekos et al. [BKKS13].

Those issues will are known to arise when using an SC1 drawing algo-
rithm3 and are not just a flaw of the approaches discussed in this thesis. A
possible solution may be to draw not SC1 drawings but Nearly Perfect Smooth
Orthogonal Drawings :

Definition 22 (Nearly Perfect Smooth Orthogonal Drawing). A k-nearly
perfect smooth orthogonal drawing is a smooth orthogonal drawing of a
graph G = (V,E), where k edges e ∈ E are drawn with 2 edge segments
where one of those segments is an arc and the other is a rectilinear line
segment whereas all the other edges are drawn with a single segment.

The idea here is to allow some of the critical bent edges to consist of a
rectilinear line segment and an arc. In particular, it may be a good idea to
either replace the arcs with largest radii (red in Figure 6.1) or the arcs that
are connected to dense areas and therefore cannot be drawn with small radius
and subsequently contribute to the largest radii (green in the figure).

2For better readability, a rather small drawing which already contained the pattern was
selected to be presented.

3At least as long as the input is an orthogonal shape, a different shape might achieve
better results.

78 CHAPTER 6. DISCUSSION

Table 6.1: Total edge lengths computed depending on nstaircase and the re-
placement of arcs for the first example graph.

nstaircase

Original
Graph
(cf. Fig-
ure 6.1)

Green arc
replaced
(cf. Fig-
ure 6.2)

Red arc
replaced
(cf. Fig-
ure 6.3)

Red arc
replaced
(cf. Fig-
ure 6.4)

1 186.9 149.7 163.4 177.4
2 171.4 140.6 162.0 173.4

In order to test which of the two arcs would be the better candidate for
replacement, the orthogonal shape was edited with yEd4 such that exactly
one of the arcs would contain a bend (yellow circle in the following Figures 6.2
to 6.4), i.e. we would obtain a 1-nearly perfect smooth orthogonal drawing.
For the green arc it is obvious at which endpoint the rectilinear line segment
should be located (cf. Figure 6.2), for the red arc both options (cf. Figures 6.3
and 6.4) were tested. Note that removing the edge and redrawing it after
calculating the remaining edge lengths will not work in general since then
there is no space reserved for the missing edge and we may be unable to draw
it (cf. Figure 6.5).

For the three different described replacements for nearly perfect smooth
orthogonal drawings on this graph, we could improve with both nstaircase = 1
and nstaircase = 2 w.r.t. total edge length except for one case (cf. Table 6.1).
For this particular graph it seems generally better to replace the green arc if
we allow only to increase the complexity of a single edge. We can even observe,
that we might increase the total edge length by replacing the wrong arcs (cf.
Figure 6.4: We cannot draw the arc smaller by inserting the rectilinear line
segment compared to the drawing in Figure 6.1).

However, replacing the first arc that needs to be drawn somewhat large and
then forces other arcs to be drawn larger does not always work. For instance,
consider the graph drawn in Figure 6.6: If we replace one of the smaller arcs
in the middle of the drawing, we can reduce the total edge length significantly
(and by doing so we end up with the drawing in Figure 6.7). However, if we
replace one of the larger arcs, we get even less total edge length (cf. Figure 6.8).
Finally, to make it even more counter-intuitive, the best drawing achieved even
is perfect smooth orthogonal (computed with nstaircase = 2; cf. Figure 6.9), the
two nearly perfect smooth orthogonal options are both worse (cf. Table 6.2).

In conclusion, it seems that nearly perfect smooth orthogonal drawings
can improve the total edge length significantly while still maintaining similar
aesthetic criteria but only if applied correctly. It seems that the decision on
the arc to replace with a smaller arc and a rectilinear line segment to achieve

4Available at https://www.yworks.com/products/yed.

https://www.yworks.com/products/yed

6.3. NEARLY PERFECT SMOOTH ORTHOGONAL DRAWINGS 79

Figure 6.1: Graph with a pattern typical for very large SC1 drawings (drawn
with nstaircase = 2). The drawing contains a dense area (blue) which causes the
green arc to be drawn with a large radius. Subsequently, the red arc’s radius has
to be even larger. These arcs are candidates for being drawn with two segments
in a nearly perfect smooth orthogonal drawing.

80 CHAPTER 6. DISCUSSION

Figure 6.2: The orthogonal shape from Figure 6.1 where the green arc is drawn
with 2 segments (drawn with nstaircase = 2) separated by the yellow vertex. The
total edge length as well as both width and height of the drawing are significantly
reduced.

Table 6.2: Total edge lengths computed depending on nstaircase and the re-
placement of arcs for the second example graph.

nstaircase
Original Graph
(cf. Figure 6.6)

Inner arc replaced
(cf. Figure 6.7)

Outer arc replaced
(cf. Figure 6.8)

1 564.1 224.3 175.6
2 164.8 179.1 168.6

6.3. NEARLY PERFECT SMOOTH ORTHOGONAL DRAWINGS 81

Figure 6.3: The orthogonal shape from Figure 6.1 where the red arc is drawn
with 2 segments (drawn with nstaircase = 2) separated by the yellow vertex.
Again the total edge length is reduced compared to the perfect smooth orthogo-
nal drawing, however this time only the height of the drawing could be reduced.

82 CHAPTER 6. DISCUSSION

Figure 6.4: The orthogonal shape from Figure 6.1 where the red arc is drawn
with 2 segments (drawn with nstaircase = 2) separated by the yellow vertex. This
time the straight-line segment is located at the other endpoint which results in
no benefit over the perfect smooth orthogonal drawing.

6.3. NEARLY PERFECT SMOOTH ORTHOGONAL DRAWINGS 83

Figure 6.5: The orthogonal shape from Figure 6.1 where the green edge was
removed before drawing (drawn with nstaircase = 2). After drawing there is no
grid space left to draw the green edge.

84 CHAPTER 6. DISCUSSION

Figure 6.6: A second example graph showing the following pattern responsible
for exponential drawing space (drawn with nstaircase = 1): The rather dense area
of the graph (blue) requires the green arc to be drawn with a radius as large as
the height of the blue area. However, the green arcs length is also influenced by
the inner connector edge length of the red arc which is further restricted by the
sequence of bridge edges (orange) pointing into the face. Simultaneously, the
green edge also defines the radius of the other arcs in the drawing.

6.3. NEARLY PERFECT SMOOTH ORTHOGONAL DRAWINGS 85

Figure 6.7: The orthogonal shape from Figure 6.6 where the inner green arc
is drawn with 2 segments (drawn with nstaircase = 1) separated by the yellow
vertex. By breaking the arc that previously defined the radii of the other arcs,
a significant decrease in total edge length and area can be achieved.

86 CHAPTER 6. DISCUSSION

Figure 6.8: The orthogonal shape from Figure 6.6 where the outer red arc
is drawn with 2 segments (drawn with nstaircase = 1) separated by the yellow
vertex. For this orthogonal shape splitting the outer arc had a stronger effect
than drawing the inner arc that defined the radii of the other arcs. This is
contrasts our findings for the other example orthogonal shape (cf. Figure 6.1).

6.3. NEARLY PERFECT SMOOTH ORTHOGONAL DRAWINGS 87

Figure 6.9: The orthogonal shape from Figure 6.6 drawn with nstaircase = 2 as
a perfect smooth orthogonal drawing. Drawing arcs with two segments similar
to Figure 6.7 and 6.8 yields a higher total edge length for nstaircase = 2 than
the perfect smooth orthogonal drawing depicted here.

88 CHAPTER 6. DISCUSSION

Figure 6.10: An arc of radius 18 and its inner approximation (red; first inner
connector edge green) as defined by the staircase approximation.

the best improvement in total edge length is not trivial. Also we already could
observe that it also matters at which endpoint of the replaced arc the rectilinear
line segment is placed. Therefore the best strategy for nearly perfect smooth
orthogonal drawings remains an open problem.

6.4 Varying the Staircase Step Size

We already discussed that we should not exceed nstaircase = 2 to avoid runtimes
which are not applicable for most practical contexts. However, the staircase
approximation was defined in Chapter 4 with an arbitrarily chosen definition
of how large steps should be (cf Figure 6.10; dividing the inner approximation
edges for nstaircase = 1 in nstaircase equally long edges).

This definition of edge lengths was defined under the assumption that
nstaircase can reach values significantly larger than 2. If we fix the number of
edges to the number of edges in the staircase approximation for nstaircase = 2
we could still vary edge lengths.

For instance, we could focus on minimizing the first inner connector edge’s
length (cf. Figure 6.11). This seems especially favorable since we first in-
troduced the staircase approximation to deal with the fact that the simple
approximation would draw the inner connector edges too long. This resulted
in too large arcs that sometimes even prevented us from finding a feasible solu-
tion. However, minimizing the first inner connector edge length, i.e. requiring
it to be 1, cannot be done easily with only linear constraints, if we wish to

6.4. VARYING THE STAIRCASE STEP SIZE 89

Figure 6.11: An arc of radius 18 and its inner approximation drawn such that
the first inner connector edge (green) is as short as possible.

draw the first inner approximation edge connected to the connector edge as
large as admitted by the arc. So far when we defined edge lengths we always
have been lucky when applying Pythagoras’ theorem and came up with
a linear equation. But if we would say that the first inner connector’s edge
length shall be 1 we could not do so5. Therefore, if we are restricted to linear
constraints, we could not reserve as few space for arc drawing as shown in the
figure if we do not know the radius in advance. This can lead to this type
of approximation performing worse w.r.t. total edge length than our staircase
approach.

Another alternative would be the minimization of space reserved for arc
drawing (cf. Figure 6.12). But if we would use this approximation, we would
again increase the length of the inner connector edge compared to the staircase
approximation which might be undesired. Also, as with minimizing the con-
nector edge length, it might be difficult to formulate this kind of approximation
properly with linear constraints.

Finally, when comparing the figures to each other, it also appears that the
staircase approximation is a good trade-off between connector edge length and
space reserved for arc drawing. However, it remains to study the effects of
alternating the edge lengths for the staircase approximation with nstaircase =
2 in-depth to confidently argue about which edge lengths perform best in

5In particular the right triangle we always used for computation would have the two
known edge lengths R and R−1

R where R is the radius of the arc - clearly the remaining edge
length cannot be expressed linearly dependent on R

90 CHAPTER 6. DISCUSSION

Figure 6.12: An arc of radius 18 and its inner approximation drawn such that
the space reserved for drawing the arc is minimized.

practice.

6.5 First Insights for the Shape Step

In this thesis, an ILP was presented which is able to compute a perfect smooth
orthogonal drawing for a given orthogonal shape as benchmark tests indicate.
As described in Chapter 3 we would like to have a TSM framework for smooth
orthogonal drawings. So far, we only discussed the metrics step of the TSM
approach. However also algorithms that compute feasible embeddings and
orthogonal shapes are needed.

The results of our practical evaluation can also give us first insights in the
properties required in the shape step so we can guarantee that the computed
shape can be drawn as a SC1 drawing. Preferably we would also like a resulting
drawing to use as few space as possible.

Bend minimization comparable to the bend minimization in Tamassia’s
min-flow algorithm for orthogonal shapes [Tam87] should also play a role for
SC1 drawings as arcs are responsible for the worst-case exponential space re-
quirement. However, there is a significant difference. For SC1 drawings, it
does not really matter how many bends an edge in the orthogonal shape has
as long as the number of bends is between 0 and 3. If we have more than 3
bends in the orthogonal shape, we cannot replace the bent edge with an arc
(for 4 bends we would need to insert a full circle, but a full circle edge would

6.5. FIRST INSIGHTS FOR THE SHAPE STEP 91

have its 2 endpoints overlapping). Therefore, no edge in the orthogonal shape
may have more than 3 bends. On the other hand, if we have between 1 and
3 bends along an edge in the orthogonal shape, it will be drawn as a single
arc in the final drawing. Of course, a three-quarters circle arc will require
more space to draw than a quarter circle arc. But if we can chose between
a single three-quarters circle arc and 3 quarter circle arcs6, it may turn out,
that 3 quarter circle arcs are even worse since they can interact with each
other and force every subsequent arc to be drawn larger than the one before.
Thus, rather than minimizing the number of bends in the orthogonal shape it
might be better to instead minimize the number of arcs in the final drawing.
However, we do not know yet if in most cases one large arc or the 3 smaller
arcs perform better in SC1 drawings.

Further, the practical evaluation tells us which of the orthogonal shapes
in our test set could not be drawn. This allows an analysis of those shapes
for local configurations that prevent our ILP from drawing the graph with
SC1. First, let us discuss configurations that only involve a single arc (cf.
Figure 6.13):

For half circle arcs we know that their endpoints need to have one common
horizontal or vertical coordinate in the final drawing (in Figure 6.13a they need
to have the same vertical coordinate). Therefore each path between the two
endpoints

• either needs to have no edge routed in the direction where the two end-
points need to have the same coordinate

• or there need to be at least two: one of them needs to increase the
common coordinates value, the other needs to decrease it. In the figure
both vertical edges on the path increase the difference of the vertical
coordinate of the endpoints

For three-quarters circle arcs on the other hand, we know that both end-
points need to be positioned on a diagonal. Thus at least two edges are needed
to be part of any path between the two endpoints where there must be at least
one horizontal and one vertical edge (unlike in Figure 6.13b). Also both of
those edges between the arcs need to be able to change the distance between
the two endpoints in the correct way (unlike in Figure 6.13c).

For quarter circle arcs, it is easy to see, that paths cannot violate their
endpoint positioning.

There are also interactions between multiple arcs that can prevent a fea-
sible drawing (cf. Figure 6.14). In Figure 6.14a two 90° arcs have a common
endpoint. Therefore the two other endpoints of the arcs would need to be lo-
cated on a diagonal. Since there is a path with only a horizontal edge between

6Those have the same total amount of bends in the orthogonal shape.

92 CHAPTER 6. DISCUSSION

(a) Half circle arcs. (b) Three-quarters circle arc.

(c) Three-quarters circle arc.

Figure 6.13: Forbidden path configurations (red) between the endpoints of a
single arc.

the two endpoints this cannot be realized. Similar problems could also arise
for other arc types. In Figure 6.14b both a blue three quarters circle arc and a
red quarter circle arc need to be drawn. However, the red arc is part of a path
between the two endpoints of the blue arc. Since the red arc requires its two
endpoints to be located on a diagonal and the remaining edges of the path are
all routed vertically, the endpoints of the blue arc cannot be positioned on a
diagonal. Thus there is no feasible drawing. Therefore, when analyzing paths
between endpoints of an arc, arcs along the path need to be treated differently
than the sum of the segments they are composed of.

Finally there are also configurations which include an entire cycle of 4 arcs

(a) Two quarter circle arcs.
(b) A quarter circle and a three-
quarters circle arc.

Figure 6.14: Forbidden configurations between multiple arcs.

6.5. FIRST INSIGHTS FOR THE SHAPE STEP 93

(a) (b)

Figure 6.15: Forbidden configurations between 4 arcs.

(cf. Figure 6.15): In Figure 6.15a the 4 arcs influence each others size in
such a way, that if one starts drawing one, every subsequent has to be drawn
larger than the one before. Finally one would also need to draw the first arc
larger than it is drawn which is a self increasing loop. In Figure 6.15b the two
arcs at the top of the drawing and the two arcs in the bottom of the drawing
need to span over the same horizontal width with each arc needing to have a
radius equal to half the horizontal width of the drawing. However there is a
path between the edges separating both pairs of arcs which only includes one
horizontal edge - therefore only one pair of arcs may be drawn correctly at
each point in time.

While the configurations shown in Figures 6.13 and 6.14 are easy to under-
stand, the configurations in 6.15 seem rather arbitrary. An algorithm for the
shape step needs to prevent all the local configurations described in this section
from appearing in the orthogonal shape. And there may be even more forbid-
den configurations as we only listed the ones we encountered in our practical
experiments and could notice when manually checking the orthogonal shapes
which could not be drawn. Thus, we cannot claim that this list is complete.
However already with the current configurations identified, it seems as if com-
puting a feasible orthogonal shape for SC1 drawings is harder than computing
the edge lengths.

94 CHAPTER 6. DISCUSSION

Chapter 7

Conclusion and Open Problems

In this thesis, we motivated the use of a Topology-Shape-Metrics approach for
perfect smooth orthogonal drawings which allows us to solve parts of the SC1

drawing problem independently.

For the metrics step, i.e. the assignment of edge lengths to a given or-
thogonal shape, three different arc approximations were presented that reduce
the perfect smooth orthogonal drawing problem to the problem of drawing
an OC1 drawing where additional constraints are imposed on the lengths of
some edges. Also an ILP was introduced that can solve this constrained OC1

drawing problem.

The simple arc approximation already succeeded in drawing most of the
orthogonal shapes of benchmark test sets that admitted a perfect smooth or-
thogonal drawing. Despite this, we could also identify orthogonal shapes which
could not be drawn due to the simple arc approximation’s limitations.

In order to also draw those shapes with perfect smooth edge complexity,
we introduced the staircase approximation. This improved approximation suc-
cessfully solved the issues of the simple arc approximation. Also the staircase
approximation improved the quality of the drawings w.r.t. total edge length.
While the staircase approximation already could improve our results for small
values of its input parameter increasing this parameter to larger values resulted
in large computation times for particularly hard to draw orthogonal shapes.

Also we discussed the minimally optimal approximation as the smallest arc
approximation only using axis-aligned straight-line segments which does not
reserve any integer point for arc drawing. We could prove that this approx-
imation is guaranteed to find a perfect smooth orthogonal drawing if such a
drawing exists and by introducing another parameter we could even show that
we can guarantee to find the perfect smooth orthogonal drawing with minimum
total edge length. However, we also showed that we would require exponential
time and space for this approach and argued that the staircase approximation
would perform better if we are restricted to a certain number of edges for

95

96 CHAPTER 7. CONCLUSION AND OPEN PROBLEMS

approximating arcs. Nevertheless, from our findings for the minimally opti-
mal approximation we could conclude that also the staircase approximation is
guaranteed to find the same results when its input parameter has exponential
values. Further we could identify the issues that resulted in the exponential in-
put parameter value and it remains unknown if they apply or if a lower bound
for the input parameter could be proven to be optimal as well.

The practical evaluation suggested that already small values for the input
parameter of the staircase approximation may suffice in practical applications
but a proof for a general claim still must still be found. The complexity of
finding a perfect smooth orthogonal drawing of a given orthogonal shape still
remains unknown mostly due to the fact that it is unknown whether an orthog-
onal shape may only admit for a single family of perfect smooth orthogonal
drawings where each drawing can be obtained from any other drawing of the
family by scaling operations.

In the discussion of our results we advised to only apply the staircase
approximation with small input parameter values as it often suffices and large
values can result in too large run times. Also we motivated nearly perfect
smooth orthogonal drawings that may help to reduce the total edge length or
make it possible to draw more orthogonal shapes once further studied. Another
suggested improvement is to fix the number of edge segments approximating
an arc but varying their lengths. For this approach further testing is required.
By investigating shapes that could not be drawn by our approaches we could
identify local configurations in orthogonal shapes that make it impossible for
the shape to admit for a perfect smooth orthogonal drawing.

Finally, the following open problems could be identified:

1. Investigate whether each orthogonal shape that admits for a perfect
smooth orthogonal drawing also admits for another perfect smooth or-
thogonal drawing that is not just a scaled version of the first. Such a
result could improve our complexity claim for our reduction from the
drawing problem to ILP to polynomial time and polynomial space.

2. Find an algorithm that given a planar embedding computes an orthog-
onal shape which admits a perfect smooth orthogonal drawing (Shape
step in the TSM framework). First insights have been discussed in Chap-
ter 6 but also suggest that the problem of finding such a shape might be
very difficult. However, possibly a constructive approach may only cre-
ate local configurations which can be proven to be drawn perfect smooth
orthogonally. Also it is not known yet which planar embeddings admit
for a such a shape

3. Investigate which edge lengths are most useful for a given number of edges
in a staircase approximation. If it can be proven that the connector edge

97

length is not as restricting as for the simple approximation, minimizing
the area for arc drawing would be best. However, if the connector edge
length is still important for the staircase approximation, it should be
minimized instead.

4. Identify the graphs that admit for a k-nearly perfect smooth orthogonal
drawing, preferably for very small constant k’s. Allowing a few edges to
be drawn with non-perfect smooth orthogonal complexity may also allow
for algorithms with better run time complexity than our ILP approach.
Also, the area requirement for nearly perfect smooth orthogonal drawings
may have a better upper bound. Thus, nearly perfect smooth orthogonal
drawings might provide better results for usage in practice while still
retaining a very low edge complexity.

98 CHAPTER 7. CONCLUSION AND OPEN PROBLEMS

Bibliography

[ABK+14] Muhammad Jawaherul Alam, Michael A. Bekos, Michael Kauf-
mann, Philipp Kindermann, Stephen G. Kobourov, and Alexander
Wolff. Smooth orthogonal drawings of planar graphs. In LATIN
2014: Theoretical Informatics - 11th Latin American Symposium,
Montevideo, Uruguay, March 31 - April 4, 2014. Proceedings, pages
144–155, 2014.

[BETT98] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioan-
nis G. Tollis. Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st
edition, 1998.

[BGPR14] Michael A. Bekos, Martin Gronemann, Sergey Pupyrev, and
Chrysanthi N. Raftopoulou. Perfect smooth orthogonal drawings.
In IISA 2014, The 5th International Conference on Information,
Intelligence, Systems and Applications, Chania, Crete, Greece,
July 7-9, 2014, pages 76–81, 2014.

[BKK+14] Michael A. Bekos, Michael Kaufmann, Robert Krug, Thorsten
Ludwig, Stefan Näher, and Vincenzo Roselli. Slanted orthogonal
drawings: Model, algorithms and evaluations. Journal of Graph
Algorithms and Applications, 18(3):459–489, 2014.

[BKKS13] Michael A. Bekos, Michael Kaufmann, Stephen G. Kobourov, and
Antonios Symvonis. Smooth orthogonal layouts. Journal of Graph
Algorithms and Applications, 17(5):575–595, 2013.

[BLTW15] Pierre Bonami, Andrea Lodi, Andrea Tramontani, and Sven Wiese.
On mathematical programming with indicator constraints. Math.
Program., 151(1):191–223, June 2015.

[DFPP90] H. De Fraysseix, J. Pach, and R. Pollack. How to draw a planar
graph on a grid. Combinatorica, 10(1):41–51, 1990.

99

100 BIBLIOGRAPHY

[EFK01] Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau.
Drawing graphs. chapter Orthogonal Graph Drawing, pages 121–
171. Springer-Verlag, London, UK, UK, 2001.

[HEH09] W. Huang, P. Eades, and Seok-Hee Hong. A graph reading behav-
ior: Geodesic-path tendency. In 2009 IEEE Pacific Visualization
Symposium, pages 137–144, April 2009.

[Hä14] Bernhard Häussner. Implementierung eines Algorithmus für das
glatt-orthogonale Zeichnen planarer Graphen. B.S. Thesis, Julius-
Maximilians-Universität Würzburg, 2014.

[NR04a] Takao Nishizeki and Md. Saidur Rahman. Graph Theoretic Foun-
dations, volume 12 of Lecture Notes Series on Computing, chap-
ter 2, pages 19–31. World Scientific Publishing Co. Pte. Ltd., 2004.

[NR04b] Takao Nishizeki and Md. Saidur Rahman. Properties of Drawings,
volume 12 of Lecture Notes Series on Computing, chapter 1.4, pages
10–11. World Scientific Publishing Co. Pte. Ltd., 2004.

[Tam87] Roberto Tamassia. On embedding a graph in the grid with the
minimum number of bends. SIAM J. Comput., 16(3):421–444, June
1987.

[Tar74] R.Endre Tarjan. A note on finding the bridges of a graph. Infor-
mation Processing Letters, 2(6):160 – 161, 1974.

[Van10] Robert J. Vanderbei. Linear Programming: Foundations and Ex-
tensions, volume 196 of International Series in Operations Re-
search & Management Science. Springer US, 3. edition, 2010.

[Wei01] René Weiskircher. Drawing Planar Graphs, pages 23–45. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001.

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig und
nur mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen,
die dem Wortlaut oder dem Sinne nach anderen Werken entnommen sind,
durch Angaben von Quellen als Entlehnung kenntlich gemacht worden sind.
Diese Masterarbeit wurde in gleicher oder ähnlicher Form in keinem anderen
Studiengang als Prüfungsleistung vorgelegt.

Tübingen, den 21. Oktober 2016 Unterschrift

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Preliminaries
	Graph Theory
	Fundamental Terminology
	Graph Drawing and Planar Graphs

	Orthogonal Drawings
	Introduction to Mathematical Optimization
	Linear Programming (LP)
	Integer Linear Programming (ILP)
	Indicator Constraints and the bigM Approach

	Smooth Orthogonal Drawings
	Related Work

	An ILP for SC1 Drawings
	General Outline
	Metrics
	Replacing Circular Arcs - A Simple Approximation
	Building the ILP
	Constraints for Approximation Edge Lengths
	Constraints for Planarity
	Constraints for Weak Planarity
	Choosing the Correct Constraints for Edge Pairs
	An Objective Function for Minimizing the Total Edge Length

	More Sophisticated Arc Approximations
	Limitations of the Simple Approximation
	A New Model for 180° and 270° Circular Arcs
	A Staircase Approximation
	A Provably Optimal Approximation
	Further Considerations

	Practical Evaluation
	Experimental Setup
	Experimental Results

	Discussion
	Discussion of Our Results
	Comments on the Runtime
	Nearly Perfect Smooth Orthogonal Drawings
	Varying the Staircase Step Size
	First Insights for the Shape Step

	Conclusion and Open Problems
	Bibliography

