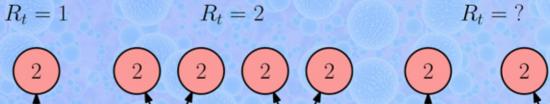
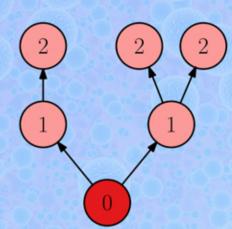
What is R? A graph drawer's perspective

R is one of the most important epidemic parameters that governments are trying to keep below one. But what it is exactly? Can we express it in graph drawing terminology?

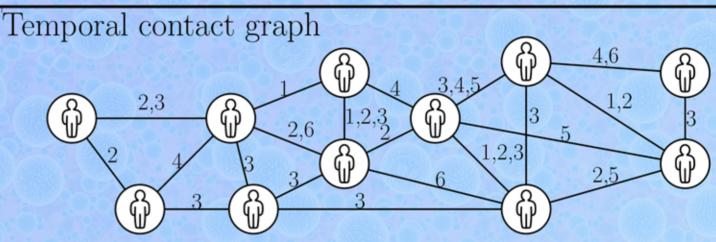

R_0 (pronounced R naught):

Basic reproduction number:


Average number of secondary infections per typical case without interventions and the entire population susceptible

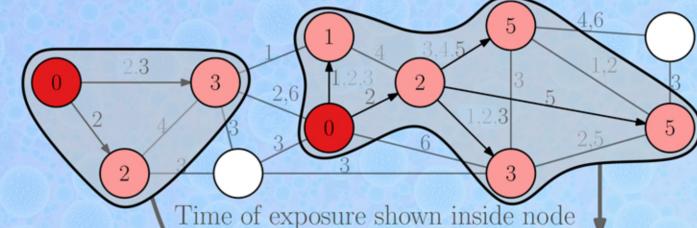
 R_t (Or R as often used in practice): Effective reproduction number: Average number of secondary infections per typical case

Epidemic definitions



Each level in the tree is one generation

Nodes are people Edges are contacts between people at a point in time

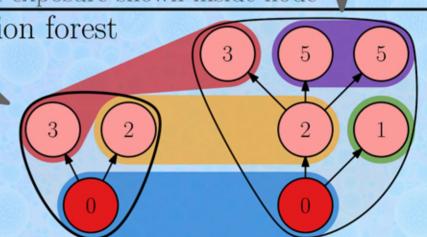

Time of contact shown on edge

Index case

Exposed

Large uncertainties in the data

- -Missing edges
- -Unknown directionality
- -Time of exposure estimated


Generate temporal infection forest

Disease spreads throughout the graph

Color bands indicate nodes exposed at the same time

Large forest of small trees due to:

- -Missing or asymptomatic cases
- -Missing transmission edges

$Y_t = \text{Set of nodes exposed at time } t$

 $X_t = \text{Set of children of } Y_t$

$$R_t^* = \begin{cases} 0 & \text{for } |Y_t| = 0\\ \frac{|X_T|}{|Y_T|} & \text{otherwise} \end{cases}$$

 R_t is usually R_t^* averaged over 7 days

Calculate R_t

t	0	1	2	3	4	5	6
Y_t			22	3		5 5	
X_t	3221	88	355	200	Die Co		
$\overline{R_t^*}$	$\frac{4}{2} = 2$	$\frac{0}{1} = 0$	$\frac{3}{2}$ =1.5	$\frac{0}{2} = 0$	0	$\frac{0}{2} = 0$	0

 $R_t = (2+0+1.5+0+0+0+0)/7 = 0.5$