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"\ ONE-WAY k-CROSSABLE GRAPHS
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Definition: one-way k-crossable graphs I Ou r Resu |tS

directed graph = left and right side of edges well-defined
left Tright

edge e Is one-way crossed
= all crossing edges enter from the same side.
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one-way k-crossablé graph G: ’
= all edges of G are one way crossed
= each edge is involved in at most k crossings
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1 Theorem 1: Let G be one-way k-crossable. Then, G is a Theorem 3: Let G be one-way 2-crossable. Then, G has at most
?; bi-planar graph, i.e., its thickness is 2. 133(n — 2) edges which is a tight bound.

every edge of G is assigned a color M W.l.o.g. every blue edge has its
blue: edges crossed by edges coming from the left endvertices in red triangles

_ red: remaining edges b\ L
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| = red and blue planar subgraphs. \ —

Each red triangle contains the common
endvertex of < 2 blue edges.
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3 red triangles contain endpoints of <
2 blue edges.

Theorem 4: G one-way 3-crossable
=- G has at most 5(n — 2) edges.

W.l.0.g. every blue edge has its
endvertices in red triangles
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Open Problems:

that gives a density
of 6n — O(1)?
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3 adjacent blue edges account for Recognition of
4 red triangles or each red triangle | || ©N€-Way k-crossable

contains < 2 adjacent blue edges. graphs
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AY’ traffic signs in Manhattan
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