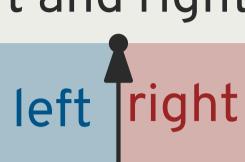
ONE-WAY k-CROSSABLE GRAPHS

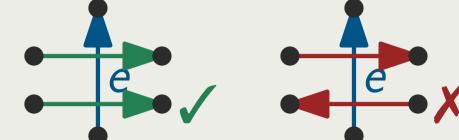
Definition: one-way k-crossable graphs

directed graph \Rightarrow left and right side of edges well-defined



edge e is one-way crossed

 \Rightarrow all crossing edges enter from the same side.



one-way k-crossable graph G:

 \Rightarrow all edges of G are one way crossed

 \Rightarrow each edge is involved in at most k crossings

Our Results

Density Upper Bound Density Lower Bound

1
$$4(n-2)$$
 $4(n-2)$
2 $\frac{13}{3}(n-2)$ $\frac{13}{3}(n-2)$
3 $5(n-2)$ $5(n-2)-2$

6(n-2)6(n-2)-6

Theorem 1: Let G be one-way k-crossable. Then, G is a bi-planar graph, i.e., its thickness is 2.

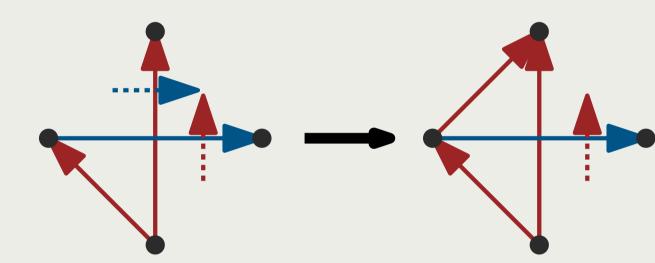
every edge of G is assigned a color

blue: edges crossed by edges coming from the left red: remaining edges

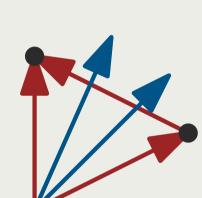
 \Rightarrow red and blue planar subgraphs.

Theorem 3: Let G be one-way 2-crossable. Then, G has at most $\frac{13}{3}(n-2)$ edges which is a tight bound.

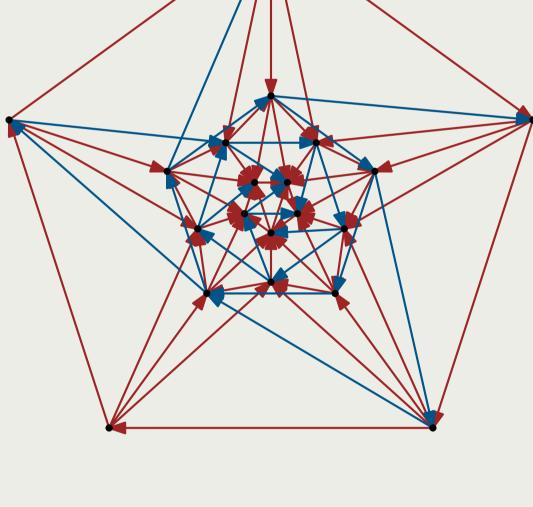
W.l.o.g. every blue edge has its endvertices in red triangles

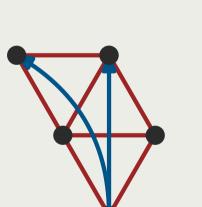


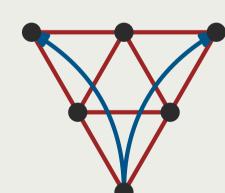
Each red triangle contains the common endvertex of \leq 2 blue edges.



3 red triangles contain endpoints of \leq



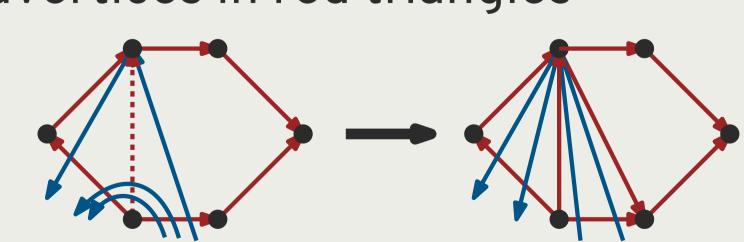




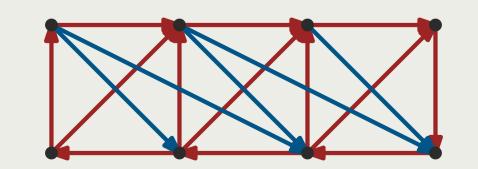
2 blue edges.

Theorem 4: G one-way 3-crossable \Rightarrow G has at most 5(n-2) edges.

W.l.o.g. every blue edge has its endvertices in red triangles



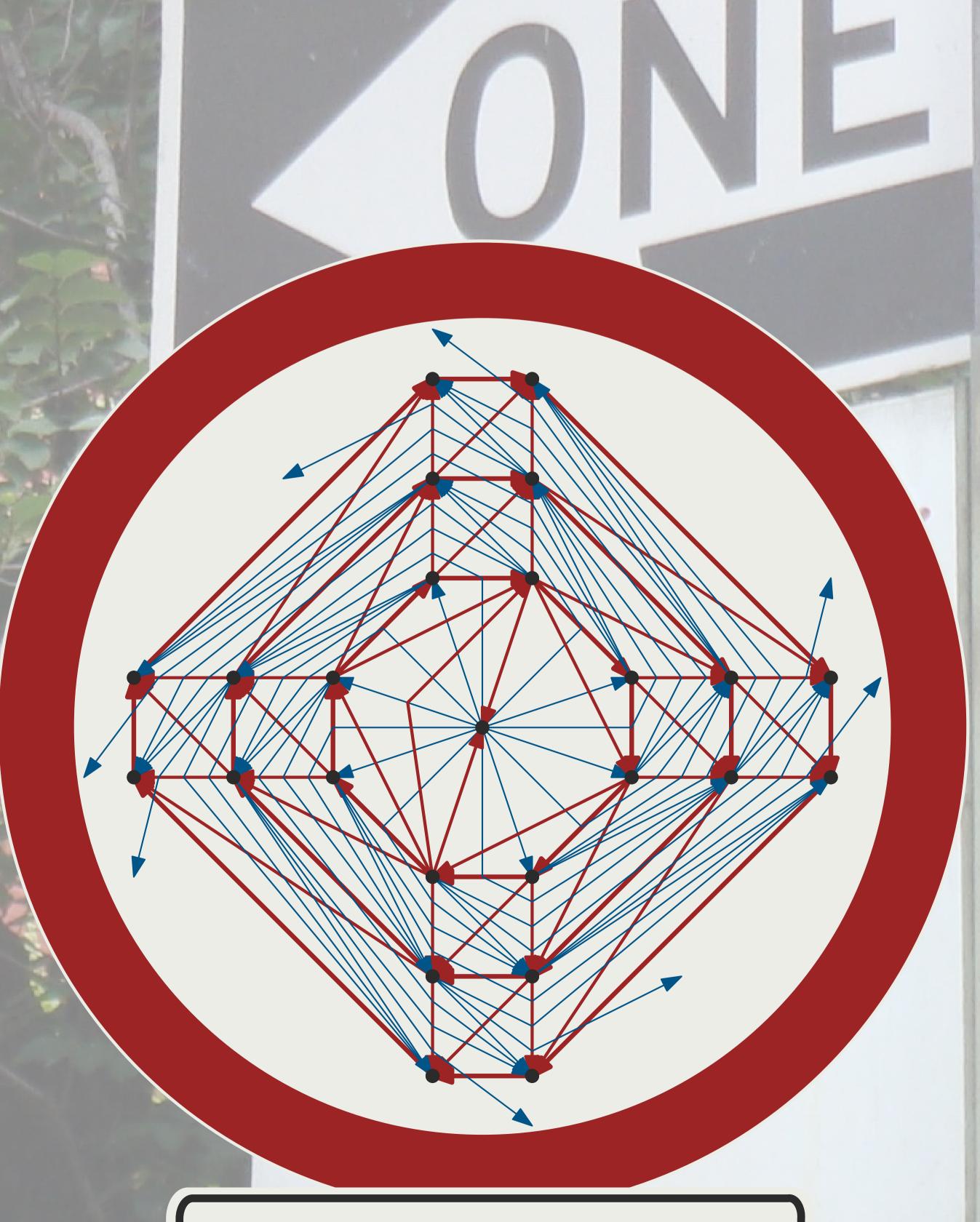
3 adjacent blue edges account for 4 red triangles or each red triangle contains \leq 2 adjacent blue edges.



Open Problems:

Is there a k < 7that gives a density of 6n - O(1)?

Recognition of one-way k-crossable graphs



Theorem 2: There are infinitely many n-vertex one-way 7-crossable graphs with m=6n-18 edges.

References:

- [1] Angelini, P., Cittadini, L., Didimo, W., Frati, F., Battista, G.D., Kaufmann, M., Symvonis, A.: On the perspectives opened by right angle crossing drawings. J. Graph Algorithms Appl. 15(1), 53–78 (2011)
- [2] Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar graphs. CoRR (2017)
- [3] Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity.
- ACM Comput. Surv. 52(1), 4:1-4:37 (2019) [4] Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Comb. 17(3), 427-439 (1997)