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Optimal-area Visibility Representations
of Outer-1-plane Graphs



Visibility Representations

Vertices = axis-aligned rectangles
Edges = axis-aligned segments, called visibilities



Visibility Representations

Vertices = axis-aligned rectangles
Edges = axis-aligned segments, called visibilities

Integer Grid = vertex corners + vertex-edge attachment points
have integer coordinates

Area = Width × Height

H
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Existence & Area Bounds

Not all graphs admit a VR

Recognition is NP-hard [Shermer, 1996]

All planar graphs admit a VR [Otten & van Wijk.,1978]



Existence & Area Bounds

If a VR exists, how small can the grid be?

Planar graphs may require Ω(n2) area [Fößmeier et al., 1997]

O((n+m)× (n+m)) = O(n× n) area is always sufficient

Outerplanar graphs have VRs in O(n · log n) area [Biedl, 2011]

Series-parallel graphs have VRs in O(n1.5) area [Biedl, 2013]

Not all graphs admit a VR

Recognition is NP-hard [Shermer, 1996]

All planar graphs admit a VR [Otten & van Wijk.,1978]



Variations

bar-(j,k) VR ortho-polygon (OP) VR

orthogonal box-drawings

bar-(j,k) VR = visibilities can see through vertices
OP VR = vertices are general orthogonal polygons
Orthogonal box-drawings = edges are general orthogonal poly-lines



Optimal-area Visibility Representations
of Outer-1-plane Graphs



Outer 1-planar Graphs

Outer 1-planar graphs = can be drawn s.t. all vertices are on the
boundary of the outer face and each edge is crossed at most once

Outer 1-plane graphs = with a fixed outer 1-planar embedding
(i.e., fixed rotation scheme and fixed pairs of crossing edges)



Outer 1-planar Graphs

Outer 1-planar graphs:
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Outer 1-planar graphs:

Planar and linear time recognition [Auer et al., 2015; Hong et al., 2015]



Outer 1-planar Graphs

Outer 1-planar graphs:

Planar and linear time recognition [Auer et al., 2015; Hong et al., 2015]

May require Ω(n2) area in any planar VR [Biedl, 2020]

Admit embedding-preserving orthogonal box-drawings with 2
bends per edge in O(n log n) area [Biedl, 2020]



Question

Can we always compute a VR of an outer-1-plane graph?



Question

Can we always compute a VR of an outer-1-plane graph?

Theorem[Biedl, Liotta, M., 2018].
A 1-plane graph admits a VR if and only if it contains no
B-configurations, no W-configurations, and no T-configurations.

B-configuration W-configuration T-configuration

YES



Question

Can we always compute a VR of an outer-1-plane graph?

Theorem[Biedl, Liotta, M., 2018].
A 1-plane graph admits a VR if and only if it contains no
B-configurations, no W-configurations, and no T-configurations.

B-configuration W-configuration T-configuration

Can we achieve subquadratic area bounds?

YES



Contribution: subquadratic bounds

drawing style lower bound upper bound

VR Ω(n1.5) O(n1.5)

complexity-1 OP VR Ω(n pw(G)) O(n1.48)

1-bend orth. box-drawing Ω(n pw(G)) O(n1.48)

VR Ω(n pw(G)) O(n1.48)

bar-(1,1) VR Ω(n pw(G)) O(n pw(G))

planar VR Ω(n(pw(G)+χ(G))) O(n(pw(G)+χ(G)))

EMBEDDING-PRESERVING
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Lower Bound for VRs

Theorem. For any N there is an n-vertex outer-1-plane graph
with n ≥ N vertices such that any embedding-preserving VR has
area Ω(n1.5)



Lower Bound for VRs

Theorem. For any N there is an n-vertex outer-1-plane graph
with n ≥ N vertices such that any embedding-preserving VR has
area Ω(n1.5)

(h− 1)
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Lower Bound for VRs

Lemma: Any VR Γ of Gh,` is such that if a rectangle has height at
most h, then Γ’s width and height are Ω(`)

(h− 1)

v1 v`

Gh,`

Hh,`

v0



Lower Bound for VRs

Lemma: Any VR Γ of Gh,` is such that if a rectangle has height at
most h, then Γ’s width and height are Ω(`)

Key observation: In any embedding-preserving VR, there is at
most one copy of Hh,` on the left side and at most one copy on the
right side of v0.
So one copy is such that all edges are vertical and, say, downward.

v0
v0

(h− 1)



Lower Bound for VRs

Lemma: Any VR Γ of Gh,` is such that if a rectangle has height at
most h, then Γ’s width and height are Ω(`)

v0

v1

rest of Hh,`

h− 2 leaves

Proof by induction

v2



Lower Bound for VRs

Theorem. For any N there is an n-vertex outer-1-plane graph
with n ≥ N vertices such that any embedding-preserving VR has
area Ω(n1.5)

To build G: fix h = ` = d
√
Ne; add N leaves at v0.

Consider any VR Γ of G.
Since deg(v0) > N , W (or H) is Ω(N).

If the height of a rectangle is more than h =
√
N we are done, else

by the previous lemma again the height is Ω(`) = Ω(
√
N).



Contribution

drawing style lower bound upper bound

VR Ω(n1.5) O(n1.5)

complexity-1 OP VR Ω(n pw(G)) O(n1.48)

1-bend orth. box-drawing Ω(n pw(G)) O(n1.48)

bidir. bar VR Ω(n2) O(n2)

VR Ω(n pw(G)) O(n1.48)

bar-(1,1) VR Ω(n pw(G)) O(n pw(G))

planar VR Ω(n(pw(G)+χ(G))) O(n(pw(G)+χ(G)))

EMBEDDING MAY NOT BE PRESERVED



Upper Bound for VRs

Theorem. Every n-vertex outer-1-plane graph has an
embedding-preserving VR of area O(n1.5).



Upper Bound for VRs

It is enough to show that the height is O(n0.5)



Upper Bound for VRs

It is enough to show that the height is O(n0.5)

Let G be a maximal-planar outer-1-plane graph
The weak dual G∗ of the planar skeleton G of G is a tree of degree
at most four

G G G∗



Upper Bound for VRs

It is enough to show that the height is O(n0.5)

Let G be a maximal-planar outer-1-plane graph
The weak dual G∗ of the planar skeleton G of G is a tree of degree
at most four

G G G∗

Idea: exploit tools known for so-called LR-drawings of binary trees



Upper Bound for VRs

Theorem [Chan, 2002]. Let p = 0.48. Given any
ordered binary rooted tree T of n vertices, there
exists a root-to-leaf path π such that for any left
subtree α and any right subtree β of π,
|α|p + |β|p ≤ (1− δ)np, for some constant δ > 0.



Upper Bound for VRs

Theorem [Biedl et al., 2021]. Let p = 0.48. Given any
ordered binary rooted tree T of n vertices, there
exists a root-to-leaf path π such that for any left
subtree α and any right subtree β of π,
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Theorem [Chan, 2002]. Let p = 0.48. Given any
ordered binary rooted tree T of n vertices, there
exists a root-to-leaf path π such that for any left
subtree α and any right subtree β of π,
|α|p + |β|p ≤ (1− δ)np, for some constant δ > 0.



Upper Bound for VRs

High-level plan;

• Pick a path π in G∗ that satisfies the theorem
• Construct a drawing of height h(F ), where F is the size of G∗,

such that

h(F ) = max
|α|p+|β|p≤(1−δ)np

{h(|α|) + h(|β|)}+O(
√
F )

One can verify that h(F ) ∈ O(
√
F ) ∈ O(

√
n)

We prove by induction that h(F ) ≤ 12
δ

√
F − 7

h(F ) = maxα,β{h(|α|) + h(|β|)}+ 11
√
F + 7 ≤

≤ 12
δ

√
|α|+ 12

δ

√
|β|+ 11

√
F − 7 ≤

≤ 12
δ
(1− δ)0.5/p

√
F + 11

√
F − 7 ≤

≤ 12
δ
(1− δ)

√
F + 11

√
F − 7 =

= 12
δ

√
F −
√
F − 7 ≤

≤ 12
δ

√
F − 7



Construction

Lemma. Let G be an outer-1-plane graph. Then it admits an
embedding-preserving VR that is a TCσ,τ -drawing of height h(F ).

σ τs t

TC2,1-drawing



Construction

Lemma. Let G be an outer-1-plane graph. Then it admits an
embedding-preserving VR that is a TCσ,τ -drawing of height h(F ).

Proof by induction on F
Base case with F = 1 and h(1) = 3 is trivial

σ τs t

TC2,1-drawing



Construction

y0=t

x3x0

y4

5

y2 y3

x1 x2
s

y1

We first draw straight the primal graph Pπ of π

outer-1-path



Construction

y0=t

x3x0

y4

h(β)−1

h(α)−1

5

y2 y3

x1 x2
s

y1

We first draw straight the primal graph Pπ of π

We next merge recursively computed drawings of subgraphs
hanging at π

1

1

outer-1-path

recursively drawn
subgraphs



Construction

y0=t

x3x0

y4

h(β)−1

h(α)−1

5

y2 y3

x1 x2
s

y1

We first draw straight the primal graph Pπ of π

We next merge recursively computed drawings of subgraphs
hanging at π

Problem: the drawing is not a TCσ,τ -drawing

1

1

outer-1-path

recursively drawn
subgraphs



Construction

We further decompose the graph.
The cap is the outer-1-path that contains s, t and all vertices
adjacent to s and t.

y2

s t

x3 x4 y2 y1x1 x2

TC1,2-drawing of C
3

1

max{h(α), h(β)}−1

A TCσ,τ -drawing of C and of its hanging subgraphs can easily be
computed.



Construction

We further decompose the graph.
The cap is the outer-1-path that contains s, t and all vertices
adjacent to s and t.

ha
nd
le

y2

s t

x3 x4 y2 y1x1 x2

TC1,2-drawing of C
3

1

max{h(α), h(β)}−1

The handle is the part of Pπ not in C.

A TCσ,τ -drawing of C and of its hanging subgraphs can easily be
computed.

s t



Construction

We may need to extract k > 1 consecutive caps, for some
parameter k.

s t
π
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Construction

We may need to extract k > 1 consecutive caps, for some
parameter k.

ha
nd
le

x4

x5 x6 y5

y2

y3y4x6

y2

ha
nd
le

y2

s t

x3 x4 y2 y1x1 x2

C1

C2

s t
π



Construction

Patching together the drawing of the cap(s) together with a
drawing of the handle is the main challenge.

y5 y6 y7

x4

x6 y5

y2

y3y4x6 y5

s
t

x4 y2 y1

handle

cap C2

cap C1

x6x6

Hy5y4

Hy6y5

?

?



Construction

We need an ad-hoc construction that requires a number of extra
rows that depends on the maximum number of edges (D) used to
attach these special subgraphs.

y5 y6 y7 y8

z2

z3

u2

u3

u4

y5 y3y4y5

Hy5y4

Hy6y5

cap C2

y9

One can show that the height is then
h(|α|) + h(|β|) + 3k +D + 4 ≤ h(F ) by choosing k ≤

√
n+ 1.



Open Problems



Open problems

• Can we achieve O(n1+ε) area by using newer results on
star-shaped drawings [Frati et al., 2020]?

• Can we achieve o(n1.48) area for OP VRs of complexity 2 or 3?

• Can we extend some of our results to other subclasses of
1-planar graphs?



Open problems

• Can we achieve O(n1+ε) area by using newer results on
star-shaped drawings [Frati et al., 2020]?

• Can we achieve o(n1.48) area for OP VRs of complexity 2 or 3?

• Can we extend some of our results to other subclasses of
1-planar graphs?

THANKS FOR YOUR ATTENTION!


