
Visualizing JIT Compiler Graphs

HeuiChan Lim and Stephen Kobourov
The University of Arizona

September 16, 2021



Just-in-Time Compiler Systems

JIT Compiler: turns bytecode into native code

JIT compilers are needed to improve performance

JIT compiler system: pipeline overview



Motivation

Google Chrome, Microsoft Edge, Apple Safari, Mozilla Firefox

Used by 2.65 billion, 600 million, 446 million, and 220 million

JIT compiler bugs can lead to security vulnerabilities

Such bugs can be used to hijack passwords and to navigate to
other sites to execute malicious programs

Need to quickly analyze, localize and fix JIT compiler bugs



Motivation

Size and complexity of JIT-based systems, make it challenging
to analyze and locate bugs quickly (e.g., Google Chrome has
over 1 million lines of code)

Traditional debuggers rely on text, even though the main
feature of a JIT compiler is building a graph-like structure to
translate bytecode into optimized machine code

Prior work and available tools focus on the static code – not
suitable for debugging JIT compilers, which generate code at
run-time



Our Contributions

We designed, implemented and tested a new visualization tool:

Part 1: relies on IR identification and generation techniques,
described in detail by Lim and Debray [VEE’21]

Part 2: merge multiple IR graphs into a single graph, simplify
the merged graph, convert the simplified graph into a
hypergraph, simplify the hypergraph, and visualize the
hypergraph



Just-in-time Compiler

The two main jobs of a JIT compiler:

IR Generation: convert bytecode into a graph

IR Optimization: modify the graph



Intermediate Representation Generation



Intermediate Representation Optimization



Theory vs. Practice



Pipeline Overview

Part 1: Fault Localization (see Lim and Debray [VEE’21])

Part 2: Visualization of the IR



Overview of Fault Localization (Part 1)

Fault Localization Idea

Randomly modify original input
code to generate many similar IRs

Some will still exhibit the buggy
behavior; others won’t

The objective is to localize the
buggy node, i.e., v4

Figure 1: Graph Comparison



Merging IR Graphs (Part 2)



Interpreting the IR as Hypergraphs (Part 2)

Nodes are generated in one
phase

Hyperedges correspond to
optimization phases



Hypergraph Simplification (Part 2)

2-Step Simplification

Hyperedge Reduction
The same phases can be
executed multiple times
Merging phases by
operation

Node Reduction



Hypergraph Simplification (Part 2)

2-Step Simplification

Hyperedge Reduction

The same phases can be
executed multiple times
Merging phases by
operation

Node Reduction



Visualizing the Hypergraph with MetroSets

Identify hyperedges (lines) with suspicious nodes (stations)
Identify hyperedges that intersect with a suspicious hyperedge
Hovering over a node shows phase, opcode, address, etc.
The phase tells us where a node was generated
And we can also see the phases where it was optimized



Example

Google Chromium bug report 5129
This compiler version has a bug in phase EarlyOptimization
We generate 19 variants of the program and run all 20
The instruction traces generate the IR graph below



“What optimizations generated the machine code?”

The map and “Key to Lines” legend show all optimization phases



“How are optimization phases related?”

We can examine the corresponding lines and use the interactive
exploration modes (intersection, union, complement, etc.) to see
the relationships among the phases.



“Which optimization phase was most active?”

We can visually identify the longest line, or hover over each line
and see the number of nodes in it



“What optimizations affected a specific node”

We can hover over the node of interest, which grays out the lines
that don’t contain the node. We can then examine each of the
corresponding lines and look at the displayed node attributes.



“Which optimization phases are likely to be buggy?”

- Find parts that differ in the IR graphs with the bug and those
without
- I.e., a program is buggy because it has extra/missing
optimizations, and this information is captured in the IRs
- Any line that has many non-original IRs represents a significant
difference between buggy and non-buggy programs



Discussion & Future Work

It seems possible to represent (usually confusing) IRs using
the metro map metaphor

Functional prototype of the system:
https://hlim1.github.io/JITCompilerIRViz/

After simplifications (of the IR graphs, the merged graph, and
the hypergraph) some useful information might be lost

A two-level visualization which shows the simplified
hypergraph as an overview but also provides all details on
demand will likely be useful

To identify suspicious phases we now hover over each line; it
would be better to localize suspicious phases and highlight
such lines

More information about each node can be provided: “why is
this node connected to another?”, “what optimization (i.e.,
removed, added) created this node?”, etc.

https://hlim1.github.io/JITCompilerIRViz/

